blob: 591e6331c42704503bd930ef5c9c4437d8163fda [file] [log] [blame]
/*
* BSS client mode implementation
* Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright 2004, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007, Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* TODO:
* order BSS list by RSSI(?) ("quality of AP")
* scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
* SSID)
*/
#include <linux/delay.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/random.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <net/iw_handler.h>
#include <asm/types.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "rate.h"
#include "led.h"
#include "mesh.h"
#define IEEE80211_AUTH_TIMEOUT (HZ / 5)
#define IEEE80211_AUTH_MAX_TRIES 3
#define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
#define IEEE80211_ASSOC_MAX_TRIES 3
#define IEEE80211_MONITORING_INTERVAL (2 * HZ)
#define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
#define IEEE80211_PROBE_INTERVAL (60 * HZ)
#define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
#define IEEE80211_SCAN_INTERVAL (2 * HZ)
#define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
#define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ)
#define IEEE80211_PROBE_DELAY (HZ / 33)
#define IEEE80211_CHANNEL_TIME (HZ / 33)
#define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
#define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
#define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
#define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
#define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
#define IEEE80211_IBSS_MAX_STA_ENTRIES 128
#define ERP_INFO_USE_PROTECTION BIT(1)
/* mgmt header + 1 byte action code */
#define IEEE80211_MIN_ACTION_SIZE (24 + 1)
#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
/* next values represent the buffer size for A-MPDU frame.
* According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
#define IEEE80211_MIN_AMPDU_BUF 0x8
#define IEEE80211_MAX_AMPDU_BUF 0x40
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len);
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len);
static void ieee80211_rx_bss_put(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss);
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
static int ieee80211_sta_wep_configured(struct net_device *dev);
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len);
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
static void sta_rx_agg_session_timer_expired(unsigned long data);
void ieee802_11_parse_elems(u8 *start, size_t len,
struct ieee802_11_elems *elems)
{
size_t left = len;
u8 *pos = start;
memset(elems, 0, sizeof(*elems));
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left)
return;
switch (id) {
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_FH_PARAMS:
elems->fh_params = pos;
elems->fh_params_len = elen;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_CF_PARAMS:
elems->cf_params = pos;
elems->cf_params_len = elen;
break;
case WLAN_EID_TIM:
elems->tim = pos;
elems->tim_len = elen;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_WPA:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (pos[3] == 1) {
/* OUI Type 1 - WPA IE */
elems->wpa = pos;
elems->wpa_len = elen;
} else if (elen >= 5 && pos[3] == 2) {
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
elems->ht_cap_elem = pos;
elems->ht_cap_elem_len = elen;
break;
case WLAN_EID_HT_EXTRA_INFO:
elems->ht_info_elem = pos;
elems->ht_info_elem_len = elen;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_MESH_CONFIG:
elems->mesh_config = pos;
elems->mesh_config_len = elen;
break;
case WLAN_EID_PEER_LINK:
elems->peer_link = pos;
elems->peer_link_len = elen;
break;
case WLAN_EID_PREQ:
elems->preq = pos;
elems->preq_len = elen;
break;
case WLAN_EID_PREP:
elems->prep = pos;
elems->prep_len = elen;
break;
case WLAN_EID_PERR:
elems->perr = pos;
elems->perr_len = elen;
break;
case WLAN_EID_CHANNEL_SWITCH:
elems->ch_switch_elem = pos;
elems->ch_switch_elem_len = elen;
break;
case WLAN_EID_QUIET:
if (!elems->quiet_elem) {
elems->quiet_elem = pos;
elems->quiet_elem_len = elen;
}
elems->num_of_quiet_elem++;
break;
case WLAN_EID_COUNTRY:
elems->country_elem = pos;
elems->country_elem_len = elen;
break;
case WLAN_EID_PWR_CONSTRAINT:
elems->pwr_constr_elem = pos;
elems->pwr_constr_elem_len = elen;
break;
default:
break;
}
left -= elen;
pos += elen;
}
}
static int ecw2cw(int ecw)
{
return (1 << ecw) - 1;
}
static void ieee80211_sta_def_wmm_params(struct net_device *dev,
struct ieee80211_sta_bss *bss,
int ibss)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
int i, have_higher_than_11mbit = 0;
/* cf. IEEE 802.11 9.2.12 */
for (i = 0; i < bss->supp_rates_len; i++)
if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
have_higher_than_11mbit = 1;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
have_higher_than_11mbit)
sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
else
sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
if (local->ops->conf_tx) {
struct ieee80211_tx_queue_params qparam;
memset(&qparam, 0, sizeof(qparam));
qparam.aifs = 2;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
!(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
qparam.cw_min = 31;
else
qparam.cw_min = 15;
qparam.cw_max = 1023;
qparam.txop = 0;
for (i = 0; i < local_to_hw(local)->queues; i++)
local->ops->conf_tx(local_to_hw(local), i, &qparam);
}
}
static void ieee80211_sta_wmm_params(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
u8 *wmm_param, size_t wmm_param_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_queue_params params;
size_t left;
int count;
u8 *pos;
if (!(ifsta->flags & IEEE80211_STA_WMM_ENABLED))
return;
if (!wmm_param)
return;
if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
return;
count = wmm_param[6] & 0x0f;
if (count == ifsta->wmm_last_param_set)
return;
ifsta->wmm_last_param_set = count;
pos = wmm_param + 8;
left = wmm_param_len - 8;
memset(&params, 0, sizeof(params));
if (!local->ops->conf_tx)
return;
local->wmm_acm = 0;
for (; left >= 4; left -= 4, pos += 4) {
int aci = (pos[0] >> 5) & 0x03;
int acm = (pos[0] >> 4) & 0x01;
int queue;
switch (aci) {
case 1:
queue = 3;
if (acm)
local->wmm_acm |= BIT(0) | BIT(3);
break;
case 2:
queue = 1;
if (acm)
local->wmm_acm |= BIT(4) | BIT(5);
break;
case 3:
queue = 0;
if (acm)
local->wmm_acm |= BIT(6) | BIT(7);
break;
case 0:
default:
queue = 2;
if (acm)
local->wmm_acm |= BIT(1) | BIT(2);
break;
}
params.aifs = pos[0] & 0x0f;
params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
params.cw_min = ecw2cw(pos[1] & 0x0f);
params.txop = get_unaligned_le16(pos + 2);
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
"cWmin=%d cWmax=%d txop=%d\n",
dev->name, queue, aci, acm, params.aifs, params.cw_min,
params.cw_max, params.txop);
#endif
/* TODO: handle ACM (block TX, fallback to next lowest allowed
* AC for now) */
if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
printk(KERN_DEBUG "%s: failed to set TX queue "
"parameters for queue %d\n", dev->name, queue);
}
}
}
static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
bool use_protection,
bool use_short_preamble)
{
struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
DECLARE_MAC_BUF(mac);
#endif
u32 changed = 0;
if (use_protection != bss_conf->use_cts_prot) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
"%s)\n",
sdata->dev->name,
use_protection ? "enabled" : "disabled",
print_mac(mac, ifsta->bssid));
}
#endif
bss_conf->use_cts_prot = use_protection;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (use_short_preamble != bss_conf->use_short_preamble) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: switched to %s barker preamble"
" (BSSID=%s)\n",
sdata->dev->name,
use_short_preamble ? "short" : "long",
print_mac(mac, ifsta->bssid));
}
#endif
bss_conf->use_short_preamble = use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
return changed;
}
static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
u8 erp_value)
{
bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
return ieee80211_handle_protect_preamb(sdata,
use_protection, use_short_preamble);
}
static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
struct ieee80211_sta_bss *bss)
{
u32 changed = 0;
if (bss->has_erp_value)
changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
else {
u16 capab = bss->capability;
changed |= ieee80211_handle_protect_preamb(sdata, false,
(capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
}
return changed;
}
int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
struct ieee80211_ht_info *ht_info)
{
if (ht_info == NULL)
return -EINVAL;
memset(ht_info, 0, sizeof(*ht_info));
if (ht_cap_ie) {
u8 ampdu_info = ht_cap_ie->ampdu_params_info;
ht_info->ht_supported = 1;
ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
ht_info->ampdu_factor =
ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
ht_info->ampdu_density =
(ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
} else
ht_info->ht_supported = 0;
return 0;
}
int ieee80211_ht_addt_info_ie_to_ht_bss_info(
struct ieee80211_ht_addt_info *ht_add_info_ie,
struct ieee80211_ht_bss_info *bss_info)
{
if (bss_info == NULL)
return -EINVAL;
memset(bss_info, 0, sizeof(*bss_info));
if (ht_add_info_ie) {
u16 op_mode;
op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
bss_info->primary_channel = ht_add_info_ie->control_chan;
bss_info->bss_cap = ht_add_info_ie->ht_param;
bss_info->bss_op_mode = (u8)(op_mode & 0xff);
}
return 0;
}
static void ieee80211_sta_send_associnfo(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
char *buf;
size_t len;
int i;
union iwreq_data wrqu;
if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
return;
buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
ifsta->assocresp_ies_len), GFP_KERNEL);
if (!buf)
return;
len = sprintf(buf, "ASSOCINFO(");
if (ifsta->assocreq_ies) {
len += sprintf(buf + len, "ReqIEs=");
for (i = 0; i < ifsta->assocreq_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocreq_ies[i]);
}
}
if (ifsta->assocresp_ies) {
if (ifsta->assocreq_ies)
len += sprintf(buf + len, " ");
len += sprintf(buf + len, "RespIEs=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
len += sprintf(buf + len, ")");
if (len > IW_CUSTOM_MAX) {
len = sprintf(buf, "ASSOCRESPIE=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = len;
wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
}
static void ieee80211_set_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
bool assoc)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_conf *conf = &local_to_hw(local)->conf;
union iwreq_data wrqu;
u32 changed = BSS_CHANGED_ASSOC;
if (assoc) {
struct ieee80211_sta_bss *bss;
ifsta->flags |= IEEE80211_STA_ASSOCIATED;
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
conf->channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
/* set timing information */
sdata->bss_conf.beacon_int = bss->beacon_int;
sdata->bss_conf.timestamp = bss->timestamp;
sdata->bss_conf.dtim_period = bss->dtim_period;
changed |= ieee80211_handle_bss_capability(sdata, bss);
ieee80211_rx_bss_put(local, bss);
}
if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
changed |= BSS_CHANGED_HT;
sdata->bss_conf.assoc_ht = 1;
sdata->bss_conf.ht_conf = &conf->ht_conf;
sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
}
ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_send_associnfo(dev, ifsta);
} else {
netif_carrier_off(dev);
ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
changed |= ieee80211_reset_erp_info(dev);
sdata->bss_conf.assoc_ht = 0;
sdata->bss_conf.ht_conf = NULL;
sdata->bss_conf.ht_bss_conf = NULL;
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
}
ifsta->last_probe = jiffies;
ieee80211_led_assoc(local, assoc);
sdata->bss_conf.assoc = assoc;
ieee80211_bss_info_change_notify(sdata, changed);
if (assoc)
netif_carrier_on(dev);
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
}
static void ieee80211_set_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, int deauth)
{
if (deauth)
ifsta->auth_tries = 0;
ifsta->assoc_tries = 0;
ieee80211_set_associated(dev, ifsta, 0);
}
void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
int encrypt)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
skb->dev = sdata->local->mdev;
skb_set_mac_header(skb, 0);
skb_set_network_header(skb, 0);
skb_set_transport_header(skb, 0);
skb->iif = sdata->dev->ifindex;
skb->do_not_encrypt = !encrypt;
dev_queue_xmit(skb);
}
static void ieee80211_send_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
int transaction, u8 *extra, size_t extra_len,
int encrypt)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 6 + extra_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
memset(mgmt, 0, 24 + 6);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_AUTH);
if (encrypt)
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
ifsta->auth_transaction = transaction + 1;
mgmt->u.auth.status_code = cpu_to_le16(0);
if (extra)
memcpy(skb_put(skb, extra_len), extra, extra_len);
ieee80211_sta_tx(dev, skb, encrypt);
}
static void ieee80211_authenticate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
DECLARE_MAC_BUF(mac);
ifsta->auth_tries++;
if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
printk(KERN_DEBUG "%s: authentication with AP %s"
" timed out\n",
dev->name, print_mac(mac, ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_AUTHENTICATE;
printk(KERN_DEBUG "%s: authenticate with AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
}
static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
struct ieee80211_supported_band *sband,
u64 *rates)
{
int i, j, count;
*rates = 0;
count = 0;
for (i = 0; i < bss->supp_rates_len; i++) {
int rate = (bss->supp_rates[i] & 0x7F) * 5;
for (j = 0; j < sband->n_bitrates; j++)
if (sband->bitrates[j].bitrate == rate) {
*rates |= BIT(j);
count++;
break;
}
}
return count;
}
static void ieee80211_send_assoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *ies;
int i, len, count, rates_len, supp_rates_len;
u16 capab;
struct ieee80211_sta_bss *bss;
int wmm = 0;
struct ieee80211_supported_band *sband;
u64 rates = 0;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
ifsta->ssid_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
capab = ifsta->capab;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
capab |= WLAN_CAPABILITY_PRIVACY;
if (bss->wmm_ie)
wmm = 1;
/* get all rates supported by the device and the AP as
* some APs don't like getting a superset of their rates
* in the association request (e.g. D-Link DAP 1353 in
* b-only mode) */
rates_len = ieee80211_compatible_rates(bss, sband, &rates);
if ((bss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) &&
(local->hw.flags & IEEE80211_HW_SPECTRUM_MGMT))
capab |= WLAN_CAPABILITY_SPECTRUM_MGMT;
ieee80211_rx_bss_put(local, bss);
} else {
rates = ~0;
rates_len = sband->n_bitrates;
}
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
skb_put(skb, 10);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_REASSOC_REQ);
mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
ETH_ALEN);
} else {
skb_put(skb, 4);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ASSOC_REQ);
mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
}
/* SSID */
ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
/* add all rates which were marked to be used above */
supp_rates_len = rates_len;
if (supp_rates_len > 8)
supp_rates_len = 8;
len = sband->n_bitrates;
pos = skb_put(skb, supp_rates_len + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = supp_rates_len;
count = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
if (++count == 8)
break;
}
}
if (count == 8) {
pos = skb_put(skb, rates_len - count + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates_len - count;
for (i++; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
}
}
}
if (capab & WLAN_CAPABILITY_SPECTRUM_MGMT) {
/* 1. power capabilities */
pos = skb_put(skb, 4);
*pos++ = WLAN_EID_PWR_CAPABILITY;
*pos++ = 2;
*pos++ = 0; /* min tx power */
*pos++ = local->hw.conf.channel->max_power; /* max tx power */
/* 2. supported channels */
/* TODO: get this in reg domain format */
pos = skb_put(skb, 2 * sband->n_channels + 2);
*pos++ = WLAN_EID_SUPPORTED_CHANNELS;
*pos++ = 2 * sband->n_channels;
for (i = 0; i < sband->n_channels; i++) {
*pos++ = ieee80211_frequency_to_channel(
sband->channels[i].center_freq);
*pos++ = 1; /* one channel in the subband*/
}
}
if (ifsta->extra_ie) {
pos = skb_put(skb, ifsta->extra_ie_len);
memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
}
if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
pos = skb_put(skb, 9);
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
*pos++ = 7; /* len */
*pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
*pos++ = 0x50;
*pos++ = 0xf2;
*pos++ = 2; /* WME */
*pos++ = 0; /* WME info */
*pos++ = 1; /* WME ver */
*pos++ = 0;
}
/* wmm support is a must to HT */
if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED) &&
sband->ht_info.ht_supported && bss->ht_add_ie) {
struct ieee80211_ht_addt_info *ht_add_info =
(struct ieee80211_ht_addt_info *)bss->ht_add_ie;
u16 cap = sband->ht_info.cap;
__le16 tmp;
u32 flags = local->hw.conf.channel->flags;
switch (ht_add_info->ht_param & IEEE80211_HT_IE_CHA_SEC_OFFSET) {
case IEEE80211_HT_IE_CHA_SEC_ABOVE:
if (flags & IEEE80211_CHAN_NO_FAT_ABOVE) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
case IEEE80211_HT_IE_CHA_SEC_BELOW:
if (flags & IEEE80211_CHAN_NO_FAT_BELOW) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
}
tmp = cpu_to_le16(cap);
pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
*pos++ = WLAN_EID_HT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_ht_cap);
memset(pos, 0, sizeof(struct ieee80211_ht_cap));
memcpy(pos, &tmp, sizeof(u16));
pos += sizeof(u16);
/* TODO: needs a define here for << 2 */
*pos++ = sband->ht_info.ampdu_factor |
(sband->ht_info.ampdu_density << 2);
memcpy(pos, sband->ht_info.supp_mcs_set, 16);
}
kfree(ifsta->assocreq_ies);
ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
if (ifsta->assocreq_ies)
memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DEAUTH);
skb_put(skb, 2);
mgmt->u.deauth.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DISASSOC);
skb_put(skb, 2);
mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_privacy_mismatch(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
int bss_privacy;
int wep_privacy;
int privacy_invoked;
if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
return 0;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (!bss)
return 0;
bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
wep_privacy = !!ieee80211_sta_wep_configured(dev);
privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
ieee80211_rx_bss_put(local, bss);
if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
return 0;
return 1;
}
static void ieee80211_associate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
DECLARE_MAC_BUF(mac);
ifsta->assoc_tries++;
if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
printk(KERN_DEBUG "%s: association with AP %s"
" timed out\n",
dev->name, print_mac(mac, ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_ASSOCIATE;
printk(KERN_DEBUG "%s: associate with AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
"mixed-cell disabled - abort association\n", dev->name);
ifsta->state = IEEE80211_DISABLED;
return;
}
ieee80211_send_assoc(dev, ifsta);
mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
}
static void ieee80211_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
int disassoc;
DECLARE_MAC_BUF(mac);
/* TODO: start monitoring current AP signal quality and number of
* missed beacons. Scan other channels every now and then and search
* for better APs. */
/* TODO: remove expired BSSes */
ifsta->state = IEEE80211_ASSOCIATED;
rcu_read_lock();
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
disassoc = 1;
} else {
disassoc = 0;
if (time_after(jiffies,
sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
printk(KERN_DEBUG "%s: No ProbeResp from "
"current AP %s - assume out of "
"range\n",
dev->name, print_mac(mac, ifsta->bssid));
disassoc = 1;
sta_info_unlink(&sta);
} else
ieee80211_send_probe_req(dev, ifsta->bssid,
local->scan_ssid,
local->scan_ssid_len);
ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
} else {
ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
if (time_after(jiffies, ifsta->last_probe +
IEEE80211_PROBE_INTERVAL)) {
ifsta->last_probe = jiffies;
ieee80211_send_probe_req(dev, ifsta->bssid,
ifsta->ssid,
ifsta->ssid_len);
}
}
}
rcu_read_unlock();
if (disassoc && sta)
sta_info_destroy(sta);
if (disassoc) {
ifsta->state = IEEE80211_DISABLED;
ieee80211_set_associated(dev, ifsta, 0);
} else {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MONITORING_INTERVAL);
}
}
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_supported_band *sband;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *supp_rates, *esupp_rates = NULL;
int i;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
"request\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_REQ);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (dst) {
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
} else {
memset(mgmt->da, 0xff, ETH_ALEN);
memset(mgmt->bssid, 0xff, ETH_ALEN);
}
pos = skb_put(skb, 2 + ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ssid_len;
memcpy(pos, ssid, ssid_len);
supp_rates = skb_put(skb, 2);
supp_rates[0] = WLAN_EID_SUPP_RATES;
supp_rates[1] = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < sband->n_bitrates; i++) {
struct ieee80211_rate *rate = &sband->bitrates[i];
if (esupp_rates) {
pos = skb_put(skb, 1);
esupp_rates[1]++;
} else if (supp_rates[1] == 8) {
esupp_rates = skb_put(skb, 3);
esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
esupp_rates[1] = 1;
pos = &esupp_rates[2];
} else {
pos = skb_put(skb, 1);
supp_rates[1]++;
}
*pos = rate->bitrate / 5;
}
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_sta_wep_configured(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata || !sdata->default_key ||
sdata->default_key->conf.alg != ALG_WEP)
return 0;
return 1;
}
static void ieee80211_auth_completed(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
printk(KERN_DEBUG "%s: authenticated\n", dev->name);
ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
ieee80211_associate(dev, ifsta);
}
static void ieee80211_auth_challenge(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u8 *pos;
struct ieee802_11_elems elems;
pos = mgmt->u.auth.variable;
ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
if (!elems.challenge)
return;
ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
elems.challenge_len + 2, 1);
}
static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
u8 dialog_token, u16 status, u16 policy,
u16 buf_size, u16 timeout)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 capab;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer "
"for addba resp frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
capab = (u16)(policy << 1); /* bit 1 aggregation policy */
capab |= (u16)(tid << 2); /* bit 5:2 TID number */
capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
ieee80211_sta_tx(dev, skb, 0);
return;
}
void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
u16 tid, u8 dialog_token, u16 start_seq_num,
u16 agg_size, u16 timeout)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 capab;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer "
"for addba request frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
mgmt->u.action.u.addba_req.dialog_token = dialog_token;
capab = (u16)(1 << 1); /* bit 1 aggregation policy */
capab |= (u16)(tid << 2); /* bit 5:2 TID number */
capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
mgmt->u.action.u.addba_req.start_seq_num =
cpu_to_le16(start_seq_num << 4);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_sta_process_addba_request(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_conf *conf = &hw->conf;
struct sta_info *sta;
struct tid_ampdu_rx *tid_agg_rx;
u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
u8 dialog_token;
int ret = -EOPNOTSUPP;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
/* extract session parameters from addba request frame */
dialog_token = mgmt->u.action.u.addba_req.dialog_token;
timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
start_seq_num =
le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
status = WLAN_STATUS_REQUEST_DECLINED;
/* sanity check for incoming parameters:
* check if configuration can support the BA policy
* and if buffer size does not exceeds max value */
if (((ba_policy != 1)
&& (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
|| (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
status = WLAN_STATUS_INVALID_QOS_PARAM;
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "AddBA Req with bad params from "
"%s on tid %u. policy %d, buffer size %d\n",
print_mac(mac, mgmt->sa), tid, ba_policy,
buf_size);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto end_no_lock;
}
/* determine default buffer size */
if (buf_size == 0) {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[conf->channel->band];
buf_size = IEEE80211_MIN_AMPDU_BUF;
buf_size = buf_size << sband->ht_info.ampdu_factor;
}
/* examine state machine */
spin_lock_bh(&sta->lock);
if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "unexpected AddBA Req from "
"%s on tid %u\n",
print_mac(mac, mgmt->sa), tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto end;
}
/* prepare A-MPDU MLME for Rx aggregation */
sta->ampdu_mlme.tid_rx[tid] =
kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
if (!sta->ampdu_mlme.tid_rx[tid]) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
tid);
#endif
goto end;
}
/* rx timer */
sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
sta_rx_agg_session_timer_expired;
sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
(unsigned long)&sta->timer_to_tid[tid];
init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
/* prepare reordering buffer */
tid_agg_rx->reorder_buf =
kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC);
if (!tid_agg_rx->reorder_buf) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_ERR "can not allocate reordering buffer "
"to tid %d\n", tid);
#endif
kfree(sta->ampdu_mlme.tid_rx[tid]);
goto end;
}
memset(tid_agg_rx->reorder_buf, 0,
buf_size * sizeof(struct sk_buff *));
if (local->ops->ampdu_action)
ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
sta->addr, tid, &start_seq_num);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (ret) {
kfree(tid_agg_rx->reorder_buf);
kfree(tid_agg_rx);
sta->ampdu_mlme.tid_rx[tid] = NULL;
goto end;
}
/* change state and send addba resp */
sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
tid_agg_rx->dialog_token = dialog_token;
tid_agg_rx->ssn = start_seq_num;
tid_agg_rx->head_seq_num = start_seq_num;
tid_agg_rx->buf_size = buf_size;
tid_agg_rx->timeout = timeout;
tid_agg_rx->stored_mpdu_num = 0;
status = WLAN_STATUS_SUCCESS;
end:
spin_unlock_bh(&sta->lock);
end_no_lock:
ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
dialog_token, status, 1, buf_size, timeout);
rcu_read_unlock();
}
static void ieee80211_sta_process_addba_resp(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
u16 capab;
u16 tid;
u8 *state;
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
state = &sta->ampdu_mlme.tid_state_tx[tid];
spin_lock_bh(&sta->lock);
if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
spin_unlock_bh(&sta->lock);
goto addba_resp_exit;
}
if (mgmt->u.action.u.addba_resp.dialog_token !=
sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
spin_unlock_bh(&sta->lock);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto addba_resp_exit;
}
del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
== WLAN_STATUS_SUCCESS) {
*state |= HT_ADDBA_RECEIVED_MSK;
sta->ampdu_mlme.addba_req_num[tid] = 0;
if (*state == HT_AGG_STATE_OPERATIONAL)
ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
spin_unlock_bh(&sta->lock);
} else {
sta->ampdu_mlme.addba_req_num[tid]++;
/* this will allow the state check in stop_BA_session */
*state = HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
WLAN_BACK_INITIATOR);
}
addba_resp_exit:
rcu_read_unlock();
}
void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
u16 initiator, u16 reason_code)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 params;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer "
"for delba frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
params = (u16)(initiator << 11); /* bit 11 initiator */
params |= (u16)(tid << 12); /* bit 15:12 TID number */
mgmt->u.action.u.delba.params = cpu_to_le16(params);
mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
ieee80211_sta_tx(dev, skb, 0);
}
void ieee80211_send_bar(struct net_device *dev, u8 *ra, u16 tid, u16 ssn)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_bar *bar;
u16 bar_control = 0;
skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer for "
"bar frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
bar = (struct ieee80211_bar *)skb_put(skb, sizeof(*bar));
memset(bar, 0, sizeof(*bar));
bar->frame_control = IEEE80211_FC(IEEE80211_FTYPE_CTL,
IEEE80211_STYPE_BACK_REQ);
memcpy(bar->ra, ra, ETH_ALEN);
memcpy(bar->ta, dev->dev_addr, ETH_ALEN);
bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL;
bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA;
bar_control |= (u16)(tid << 12);
bar->control = cpu_to_le16(bar_control);
bar->start_seq_num = cpu_to_le16(ssn);
ieee80211_sta_tx(dev, skb, 0);
}
void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
u16 initiator, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
int ret, i;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, ra);
if (!sta) {
rcu_read_unlock();
return;
}
/* check if TID is in operational state */
spin_lock_bh(&sta->lock);
if (sta->ampdu_mlme.tid_state_rx[tid]
!= HT_AGG_STATE_OPERATIONAL) {
spin_unlock_bh(&sta->lock);
rcu_read_unlock();
return;
}
sta->ampdu_mlme.tid_state_rx[tid] =
HT_AGG_STATE_REQ_STOP_BA_MSK |
(initiator << HT_AGG_STATE_INITIATOR_SHIFT);
spin_unlock_bh(&sta->lock);
/* stop HW Rx aggregation. ampdu_action existence
* already verified in session init so we add the BUG_ON */
BUG_ON(!local->ops->ampdu_action);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
print_mac(mac, ra), tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
ra, tid, NULL);
if (ret)
printk(KERN_DEBUG "HW problem - can not stop rx "
"aggregation for tid %d\n", tid);
/* shutdown timer has not expired */
if (initiator != WLAN_BACK_TIMER)
del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
/* check if this is a self generated aggregation halt */
if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
ieee80211_send_delba(dev, ra, tid, 0, reason);
/* free the reordering buffer */
for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
/* release the reordered frames */
dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
}
}
/* free resources */
kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
kfree(sta->ampdu_mlme.tid_rx[tid]);
sta->ampdu_mlme.tid_rx[tid] = NULL;
sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
rcu_read_unlock();
}
static void ieee80211_sta_process_delba(struct net_device *dev,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
u16 tid, params;
u16 initiator;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
params = le16_to_cpu(mgmt->u.action.u.delba.params);
tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
print_mac(mac, mgmt->sa),
initiator ? "initiator" : "recipient", tid,
mgmt->u.action.u.delba.reason_code);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (initiator == WLAN_BACK_INITIATOR)
ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
WLAN_BACK_INITIATOR, 0);
else { /* WLAN_BACK_RECIPIENT */
spin_lock_bh(&sta->lock);
sta->ampdu_mlme.tid_state_tx[tid] =
HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
WLAN_BACK_RECIPIENT);
}
rcu_read_unlock();
}
/*
* After sending add Block Ack request we activated a timer until
* add Block Ack response will arrive from the recipient.
* If this timer expires sta_addba_resp_timer_expired will be executed.
*/
void sta_addba_resp_timer_expired(unsigned long data)
{
/* not an elegant detour, but there is no choice as the timer passes
* only one argument, and both sta_info and TID are needed, so init
* flow in sta_info_create gives the TID as data, while the timer_to_id
* array gives the sta through container_of */
u16 tid = *(u8 *)data;
struct sta_info *temp_sta = container_of((void *)data,
struct sta_info, timer_to_tid[tid]);
struct ieee80211_local *local = temp_sta->local;
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
u8 *state;
rcu_read_lock();
sta = sta_info_get(local, temp_sta->addr);
if (!sta) {
rcu_read_unlock();
return;
}
state = &sta->ampdu_mlme.tid_state_tx[tid];
/* check if the TID waits for addBA response */
spin_lock_bh(&sta->lock);
if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
spin_unlock_bh(&sta->lock);
*state = HT_AGG_STATE_IDLE;
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "timer expired on tid %d but we are not "
"expecting addBA response there", tid);
#endif
goto timer_expired_exit;
}
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
#endif
/* go through the state check in stop_BA_session */
*state = HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
WLAN_BACK_INITIATOR);
timer_expired_exit:
rcu_read_unlock();
}
/*
* After accepting the AddBA Request we activated a timer,
* resetting it after each frame that arrives from the originator.
* if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
*/
static void sta_rx_agg_session_timer_expired(unsigned long data)
{
/* not an elegant detour, but there is no choice as the timer passes
* only one argument, and various sta_info are needed here, so init
* flow in sta_info_create gives the TID as data, while the timer_to_id
* array gives the sta through container_of */
u8 *ptid = (u8 *)data;
u8 *timer_to_id = ptid - *ptid;
struct sta_info *sta = container_of(timer_to_id, struct sta_info,
timer_to_tid[0]);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
#endif
ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
(u16)*ptid, WLAN_BACK_TIMER,
WLAN_REASON_QSTA_TIMEOUT);
}
void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int i;
for (i = 0; i < STA_TID_NUM; i++) {
ieee80211_stop_tx_ba_session(&local->hw, addr, i,
WLAN_BACK_INITIATOR);
ieee80211_sta_stop_rx_ba_session(dev, addr, i,
WLAN_BACK_RECIPIENT,
WLAN_REASON_QSTA_LEAVE_QBSS);
}
}
static void ieee80211_send_refuse_measurement_request(struct net_device *dev,
struct ieee80211_msrment_ie *request_ie,
const u8 *da, const u8 *bssid,
u8 dialog_token)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *msr_report;
skb = dev_alloc_skb(sizeof(*msr_report) + local->hw.extra_tx_headroom +
sizeof(struct ieee80211_msrment_ie));
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer for "
"measurement report frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
msr_report = (struct ieee80211_mgmt *)skb_put(skb, 24);
memset(msr_report, 0, 24);
memcpy(msr_report->da, da, ETH_ALEN);
memcpy(msr_report->sa, dev->dev_addr, ETH_ALEN);
memcpy(msr_report->bssid, bssid, ETH_ALEN);
msr_report->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(msr_report->u.action.u.measurement));
msr_report->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
msr_report->u.action.u.measurement.action_code =
WLAN_ACTION_SPCT_MSR_RPRT;
msr_report->u.action.u.measurement.dialog_token = dialog_token;
msr_report->u.action.u.measurement.element_id = WLAN_EID_MEASURE_REPORT;
msr_report->u.action.u.measurement.length =
sizeof(struct ieee80211_msrment_ie);
memset(&msr_report->u.action.u.measurement.msr_elem, 0,
sizeof(struct ieee80211_msrment_ie));
msr_report->u.action.u.measurement.msr_elem.token = request_ie->token;
msr_report->u.action.u.measurement.msr_elem.mode |=
IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED;
msr_report->u.action.u.measurement.msr_elem.type = request_ie->type;
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_sta_process_measurement_req(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
/*
* Ignoring measurement request is spec violation.
* Mandatory measurements must be reported optional
* measurements might be refused or reported incapable
* For now just refuse
* TODO: Answer basic measurement as unmeasured
*/
ieee80211_send_refuse_measurement_request(dev,
&mgmt->u.action.u.measurement.msr_elem,
mgmt->sa, mgmt->bssid,
mgmt->u.action.u.measurement.dialog_token);
}
static void ieee80211_rx_mgmt_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u16 auth_alg, auth_transaction, status_code;
DECLARE_MAC_BUF(mac);
if (ifsta->state != IEEE80211_AUTHENTICATE &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
return;
if (len < 24 + 6)
return;
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
return;
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
return;
auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
status_code = le16_to_cpu(mgmt->u.auth.status_code);
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
/*
* IEEE 802.11 standard does not require authentication in IBSS
* networks and most implementations do not seem to use it.
* However, try to reply to authentication attempts if someone
* has actually implemented this.
*/
if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1)
return;
ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
}
if (auth_alg != ifsta->auth_alg ||
auth_transaction != ifsta->auth_transaction)
return;
if (status_code != WLAN_STATUS_SUCCESS) {
if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
u8 algs[3];
const int num_algs = ARRAY_SIZE(algs);
int i, pos;
algs[0] = algs[1] = algs[2] = 0xff;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
algs[0] = WLAN_AUTH_OPEN;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
algs[1] = WLAN_AUTH_SHARED_KEY;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
algs[2] = WLAN_AUTH_LEAP;
if (ifsta->auth_alg == WLAN_AUTH_OPEN)
pos = 0;
else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
pos = 1;
else
pos = 2;
for (i = 0; i < num_algs; i++) {
pos++;
if (pos >= num_algs)
pos = 0;
if (algs[pos] == ifsta->auth_alg ||
algs[pos] == 0xff)
continue;
if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
!ieee80211_sta_wep_configured(dev))
continue;
ifsta->auth_alg = algs[pos];
break;
}
}
return;
}
switch (ifsta->auth_alg) {
case WLAN_AUTH_OPEN:
case WLAN_AUTH_LEAP:
ieee80211_auth_completed(dev, ifsta);
break;
case WLAN_AUTH_SHARED_KEY:
if (ifsta->auth_transaction == 4)
ieee80211_auth_completed(dev, ifsta);
else
ieee80211_auth_challenge(dev, ifsta, mgmt, len);
break;
}
}
static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
DECLARE_MAC_BUF(mac);
if (len < 24 + 2)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
return;
reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
if (ifsta->flags & IEEE80211_STA_AUTHENTICATED)
printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
if (ifsta->state == IEEE80211_AUTHENTICATE ||
ifsta->state == IEEE80211_ASSOCIATE ||
ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_AUTHENTICATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 1);
ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
}
static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
DECLARE_MAC_BUF(mac);
if (len < 24 + 2)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
return;
reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
printk(KERN_DEBUG "%s: disassociated\n", dev->name);
if (ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_ASSOCIATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 0);
}
static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
int reassoc)
{
struct ieee80211_local *local = sdata->local;
struct net_device *dev = sdata->dev;
struct ieee80211_supported_band *sband;
struct sta_info *sta;
u64 rates, basic_rates;
u16 capab_info, status_code, aid;
struct ieee802_11_elems elems;
struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
u8 *pos;
int i, j;
DECLARE_MAC_BUF(mac);
bool have_higher_than_11mbit = false;
/* AssocResp and ReassocResp have identical structure, so process both
* of them in this function. */
if (ifsta->state != IEEE80211_ASSOCIATE)
return;
if (len < 24 + 6)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
return;
capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
"status=%d aid=%d)\n",
dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
if (status_code != WLAN_STATUS_SUCCESS) {
printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
dev->name, status_code);
/* if this was a reassociation, ensure we try a "full"
* association next time. This works around some broken APs
* which do not correctly reject reassociation requests. */
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
return;
}
if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
"set\n", dev->name, aid);
aid &= ~(BIT(15) | BIT(14));
pos = mgmt->u.assoc_resp.variable;
ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
if (!elems.supp_rates) {
printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
dev->name);
return;
}
printk(KERN_DEBUG "%s: associated\n", dev->name);
ifsta->aid = aid;
ifsta->ap_capab = capab_info;
kfree(ifsta->assocresp_ies);
ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
if (ifsta->assocresp_ies)
memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
rcu_read_lock();
/* Add STA entry for the AP */
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
struct ieee80211_sta_bss *bss;
int err;
sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
if (!sta) {
printk(KERN_DEBUG "%s: failed to alloc STA entry for"
" the AP\n", dev->name);
rcu_read_unlock();
return;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
sta->last_signal = bss->signal;
sta->last_qual = bss->qual;
sta->last_noise = bss->noise;
ieee80211_rx_bss_put(local, bss);
}
err = sta_info_insert(sta);
if (err) {
printk(KERN_DEBUG "%s: failed to insert STA entry for"
" the AP (error %d)\n", dev->name, err);
rcu_read_unlock();
return;
}
}
/*
* FIXME: Do we really need to update the sta_info's information here?
* We already know about the AP (we found it in our list) so it
* should already be filled with the right info, no?
* As is stands, all this is racy because typically we assume
* the information that is filled in here (except flags) doesn't
* change while a STA structure is alive. As such, it should move
* to between the sta_info_alloc() and sta_info_insert() above.
*/
set_sta_flags(sta, WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
WLAN_STA_AUTHORIZED);
rates = 0;
basic_rates = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < elems.supp_rates_len; i++) {
int rate = (elems.supp_rates[i] & 0x7f) * 5;
if (rate > 110)
have_higher_than_11mbit = true;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
if (elems.supp_rates[i] & 0x80)
basic_rates |= BIT(j);
}
}
for (i = 0; i < elems.ext_supp_rates_len; i++) {
int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
if (rate > 110)
have_higher_than_11mbit = true;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
if (elems.ext_supp_rates[i] & 0x80)
basic_rates |= BIT(j);
}
}
sta->supp_rates[local->hw.conf.channel->band] = rates;
sdata->basic_rates = basic_rates;
/* cf. IEEE 802.11 9.2.12 */
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
have_higher_than_11mbit)
sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
else
sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
(ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
struct ieee80211_ht_bss_info bss_info;
ieee80211_ht_cap_ie_to_ht_info(
(struct ieee80211_ht_cap *)
elems.ht_cap_elem, &sta->ht_info);
ieee80211_ht_addt_info_ie_to_ht_bss_info(
(struct ieee80211_ht_addt_info *)
elems.ht_info_elem, &bss_info);
ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
}
rate_control_rate_init(sta, local);
if (elems.wmm_param) {
set_sta_flags(sta, WLAN_STA_WME);
rcu_read_unlock();
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
} else
rcu_read_unlock();
/* set AID and assoc capability,
* ieee80211_set_associated() will tell the driver */
bss_conf->aid = aid;
bss_conf->assoc_capability = capab_info;
ieee80211_set_associated(dev, ifsta, 1);
ieee80211_associated(dev, ifsta);
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
u8 hash_idx;
if (bss_mesh_cfg(bss))
hash_idx = mesh_id_hash(bss_mesh_id(bss),
bss_mesh_id_len(bss));
else
hash_idx = STA_HASH(bss->bssid);
bss->hnext = local->sta_bss_hash[hash_idx];
local->sta_bss_hash[hash_idx] = bss;
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_del(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_sta_bss *b, *prev = NULL;
b = local->sta_bss_hash[STA_HASH(bss->bssid)];
while (b) {
if (b == bss) {
if (!prev)
local->sta_bss_hash[STA_HASH(bss->bssid)] =
bss->hnext;
else
prev->hnext = bss->hnext;
break;
}
prev = b;
b = b->hnext;
}
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
if (!bss)
return NULL;
atomic_inc(&bss->users);
atomic_inc(&bss->users);
memcpy(bss->bssid, bssid, ETH_ALEN);
bss->freq = freq;
if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
memcpy(bss->ssid, ssid, ssid_len);
bss->ssid_len = ssid_len;
}
spin_lock_bh(&local->sta_bss_lock);
/* TODO: order by RSSI? */
list_add_tail(&bss->list, &local->sta_bss_list);
__ieee80211_rx_bss_hash_add(dev, bss);
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
bss = local->sta_bss_hash[STA_HASH(bssid)];
while (bss) {
if (!bss_mesh_cfg(bss) &&
!memcmp(bss->bssid, bssid, ETH_ALEN) &&
bss->freq == freq &&
bss->ssid_len == ssid_len &&
(ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
atomic_inc(&bss->users);
break;
}
bss = bss->hnext;
}
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
#ifdef CONFIG_MAC80211_MESH
static struct ieee80211_sta_bss *
ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
u8 *mesh_cfg, int freq)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
while (bss) {
if (bss_mesh_cfg(bss) &&
!memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
bss->freq == freq &&
mesh_id_len == bss->mesh_id_len &&
(mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
mesh_id_len))) {
atomic_inc(&bss->users);
break;
}
bss = bss->hnext;
}
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static struct ieee80211_sta_bss *
ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
u8 *mesh_cfg, int mesh_config_len, int freq)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
if (mesh_config_len != MESH_CFG_LEN)
return NULL;
bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
if (!bss)
return NULL;
bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
if (!bss->mesh_cfg) {
kfree(bss);
return NULL;
}
if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
if (!bss->mesh_id) {
kfree(bss->mesh_cfg);
kfree(bss);
return NULL;
}
memcpy(bss->mesh_id, mesh_id, mesh_id_len);
}
atomic_inc(&bss->users);
atomic_inc(&bss->users);
memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
bss->mesh_id_len = mesh_id_len;
bss->freq = freq;
spin_lock_bh(&local->sta_bss_lock);
/* TODO: order by RSSI? */
list_add_tail(&bss->list, &local->sta_bss_list);
__ieee80211_rx_bss_hash_add(dev, bss);
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
#endif
static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
{
kfree(bss->wpa_ie);
kfree(bss->rsn_ie);
kfree(bss->wmm_ie);
kfree(bss->ht_ie);
kfree(bss->ht_add_ie);
kfree(bss_mesh_id(bss));
kfree(bss_mesh_cfg(bss));
kfree(bss);
}
static void ieee80211_rx_bss_put(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss)
{
local_bh_disable();
if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
local_bh_enable();
return;
}
__ieee80211_rx_bss_hash_del(local, bss);
list_del(&bss->list);
spin_unlock_bh(&local->sta_bss_lock);
ieee80211_rx_bss_free(bss);
}
void ieee80211_rx_bss_list_init(struct ieee80211_local *local)
{
spin_lock_init(&local->sta_bss_lock);
INIT_LIST_HEAD(&local->sta_bss_list);
}
void ieee80211_rx_bss_list_deinit(struct ieee80211_local *local)
{
struct ieee80211_sta_bss *bss, *tmp;
list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
ieee80211_rx_bss_put(local, bss);
}
static int ieee80211_sta_join_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int res, rates, i, j;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_supported_band *sband;
union iwreq_data wrqu;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/* Remove possible STA entries from other IBSS networks. */
sta_info_flush_delayed(sdata);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID);
if (res)
return res;
local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
sdata->drop_unencrypted = bss->capability &
WLAN_CAPABILITY_PRIVACY ? 1 : 0;
res = ieee80211_set_freq(dev, bss->freq);
if (res)
return res;
/* Build IBSS probe response */
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
if (skb) {
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *)
skb_put(skb, 24 + sizeof(mgmt->u.beacon));
memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_RESP);
memset(mgmt->da, 0xff, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.beacon.beacon_int =
cpu_to_le16(local->hw.conf.beacon_int);
mgmt->u.beacon.timestamp = cpu_to_le64(bss->timestamp);
mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
rates = bss->supp_rates_len;
if (rates > 8)
rates = 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = rates;
memcpy(pos, bss->supp_rates, rates);
if (bss->band == IEEE80211_BAND_2GHZ) {
pos = skb_put(skb, 2 + 1);
*pos++ = WLAN_EID_DS_PARAMS;
*pos++ = 1;
*pos++ = ieee80211_frequency_to_channel(bss->freq);
}
pos = skb_put(skb, 2 + 2);
*pos++ = WLAN_EID_IBSS_PARAMS;
*pos++ = 2;
/* FIX: set ATIM window based on scan results */
*pos++ = 0;
*pos++ = 0;
if (bss->supp_rates_len > 8) {
rates = bss->supp_rates_len - 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates;
memcpy(pos, &bss->supp_rates[8], rates);
}
ifsta->probe_resp = skb;
ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
}
rates = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < bss->supp_rates_len; i++) {
int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++)
if (sband->bitrates[j].bitrate == bitrate)
rates |= BIT(j);
}
ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
ieee80211_sta_def_wmm_params(dev, bss, 1);
ifsta->state = IEEE80211_IBSS_JOINED;
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
memset(&wrqu, 0, sizeof(wrqu));
memcpy(wrqu.ap_addr.sa_data, bss->bssid, ETH_ALEN);
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
return res;
}
u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
struct ieee802_11_elems *elems,
enum ieee80211_band band)
{
struct ieee80211_supported_band *sband;
struct ieee80211_rate *bitrates;
size_t num_rates;
u64 supp_rates;
int i, j;
sband = local->hw.wiphy->bands[band];
if (!sband) {
WARN_ON(1);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
}
bitrates = sband->bitrates;
num_rates = sband->n_bitrates;
supp_rates = 0;
for (i = 0; i < elems->supp_rates_len +
elems->ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
if (i < elems->supp_rates_len)
rate = elems->supp_rates[i];
else if (elems->ext_supp_rates)
rate = elems->ext_supp_rates
[i - elems->supp_rates_len];
own_rate = 5 * (rate & 0x7f);
for (j = 0; j < num_rates; j++)
if (bitrates[j].bitrate == own_rate)
supp_rates |= BIT(j);
}
return supp_rates;
}
static void ieee80211_rx_bss_info(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status,
struct ieee802_11_elems *elems,
int beacon)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int freq, clen;
struct ieee80211_sta_bss *bss;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u64 beacon_timestamp, rx_timestamp;
struct ieee80211_channel *channel;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
return; /* ignore ProbeResp to foreign address */
beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
if (ieee80211_vif_is_mesh(&sdata->vif) && elems->mesh_id &&
elems->mesh_config && mesh_matches_local(elems, dev)) {
u64 rates = ieee80211_sta_get_rates(local, elems,
rx_status->band);
mesh_neighbour_update(mgmt->sa, rates, dev,
mesh_peer_accepts_plinks(elems, dev));
}
rcu_read_lock();
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems->supp_rates &&
memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
(sta = sta_info_get(local, mgmt->sa))) {
u64 prev_rates;
u64 supp_rates = ieee80211_sta_get_rates(local, elems,
rx_status->band);
prev_rates = sta->supp_rates[rx_status->band];
sta->supp_rates[rx_status->band] &= supp_rates;
if (sta->supp_rates[rx_status->band] == 0) {
/* No matching rates - this should not really happen.
* Make sure that at least one rate is marked
* supported to avoid issues with TX rate ctrl. */
sta->supp_rates[rx_status->band] =
sdata->u.sta.supp_rates_bits[rx_status->band];
}
}
rcu_read_unlock();
if (elems->ds_params && elems->ds_params_len == 1)
freq = ieee80211_channel_to_frequency(elems->ds_params[0]);
else
freq = rx_status->freq;
channel = ieee80211_get_channel(local->hw.wiphy, freq);
if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
return;
#ifdef CONFIG_MAC80211_MESH
if (elems->mesh_config)
bss = ieee80211_rx_mesh_bss_get(dev, elems->mesh_id,
elems->mesh_id_len, elems->mesh_config, freq);
else
#endif
bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
elems->ssid, elems->ssid_len);
if (!bss) {
#ifdef CONFIG_MAC80211_MESH
if (elems->mesh_config)
bss = ieee80211_rx_mesh_bss_add(dev, elems->mesh_id,
elems->mesh_id_len, elems->mesh_config,
elems->mesh_config_len, freq);
else
#endif
bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
elems->ssid, elems->ssid_len);
if (!bss)
return;
} else {
#if 0
/* TODO: order by RSSI? */
spin_lock_bh(&local->sta_bss_lock);
list_move_tail(&bss->list, &local->sta_bss_list);
spin_unlock_bh(&local->sta_bss_lock);
#endif
}
/* save the ERP value so that it is available at association time */
if (elems->erp_info && elems->erp_info_len >= 1) {
bss->erp_value = elems->erp_info[0];
bss->has_erp_value = 1;
}
if (elems->ht_cap_elem &&
(!bss->ht_ie || bss->ht_ie_len != elems->ht_cap_elem_len ||
memcmp(bss->ht_ie, elems->ht_cap_elem, elems->ht_cap_elem_len))) {
kfree(bss->ht_ie);
bss->ht_ie = kmalloc(elems->ht_cap_elem_len + 2, GFP_ATOMIC);
if (bss->ht_ie) {
memcpy(bss->ht_ie, elems->ht_cap_elem - 2,
elems->ht_cap_elem_len + 2);
bss->ht_ie_len = elems->ht_cap_elem_len + 2;
} else
bss->ht_ie_len = 0;
} else if (!elems->ht_cap_elem && bss->ht_ie) {
kfree(bss->ht_ie);
bss->ht_ie = NULL;
bss->ht_ie_len = 0;
}
if (elems->ht_info_elem &&
(!bss->ht_add_ie ||
bss->ht_add_ie_len != elems->ht_info_elem_len ||
memcmp(bss->ht_add_ie, elems->ht_info_elem,
elems->ht_info_elem_len))) {
kfree(bss->ht_add_ie);
bss->ht_add_ie =
kmalloc(elems->ht_info_elem_len + 2, GFP_ATOMIC);
if (bss->ht_add_ie) {
memcpy(bss->ht_add_ie, elems->ht_info_elem - 2,
elems->ht_info_elem_len + 2);
bss->ht_add_ie_len = elems->ht_info_elem_len + 2;
} else
bss->ht_add_ie_len = 0;
} else if (!elems->ht_info_elem && bss->ht_add_ie) {
kfree(bss->ht_add_ie);
bss->ht_add_ie = NULL;
bss->ht_add_ie_len = 0;
}
bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
if (elems->tim) {
struct ieee80211_tim_ie *tim_ie =
(struct ieee80211_tim_ie *)elems->tim;
bss->dtim_period = tim_ie->dtim_period;
}
/* set default value for buggy APs */
if (!elems->tim || bss->dtim_period == 0)
bss->dtim_period = 1;
bss->supp_rates_len = 0;
if (elems->supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems->supp_rates_len)
clen = elems->supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len], elems->supp_rates,
clen);
bss->supp_rates_len += clen;
}
if (elems->ext_supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems->ext_supp_rates_len)
clen = elems->ext_supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len],
elems->ext_supp_rates, clen);
bss->supp_rates_len += clen;
}
bss->band = rx_status->band;
bss->timestamp = beacon_timestamp;
bss->last_update = jiffies;
bss->signal = rx_status->signal;
bss->noise = rx_status->noise;
bss->qual = rx_status->qual;
if (!beacon && !bss->probe_resp)
bss->probe_resp = true;
/*
* In STA mode, the remaining parameters should not be overridden
* by beacons because they're not necessarily accurate there.
*/
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
bss->probe_resp && beacon) {
ieee80211_rx_bss_put(local, bss);
return;
}
if (elems->wpa &&
(!bss->wpa_ie || bss->wpa_ie_len != elems->wpa_len ||
memcmp(bss->wpa_ie, elems->wpa, elems->wpa_len))) {
kfree(bss->wpa_ie);
bss->wpa_ie = kmalloc(elems->wpa_len + 2, GFP_ATOMIC);
if (bss->wpa_ie) {
memcpy(bss->wpa_ie, elems->wpa - 2, elems->wpa_len + 2);
bss->wpa_ie_len = elems->wpa_len + 2;
} else
bss->wpa_ie_len = 0;
} else if (!elems->wpa && bss->wpa_ie) {
kfree(bss->wpa_ie);
bss->wpa_ie = NULL;
bss->wpa_ie_len = 0;
}
if (elems->rsn &&
(!bss->rsn_ie || bss->rsn_ie_len != elems->rsn_len ||
memcmp(bss->rsn_ie, elems->rsn, elems->rsn_len))) {
kfree(bss->rsn_ie);
bss->rsn_ie = kmalloc(elems->rsn_len + 2, GFP_ATOMIC);
if (bss->rsn_ie) {
memcpy(bss->rsn_ie, elems->rsn - 2, elems->rsn_len + 2);
bss->rsn_ie_len = elems->rsn_len + 2;
} else
bss->rsn_ie_len = 0;
} else if (!elems->rsn && bss->rsn_ie) {
kfree(bss->rsn_ie);
bss->rsn_ie = NULL;
bss->rsn_ie_len = 0;
}
/*
* Cf.
* http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
*
* quoting:
*
* In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
* Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
* Alliance (September 1, 2004) is incorporated by reference herein.
* The inclusion of the WMM Parameters in probe responses and
* association responses is mandatory for WMM enabled networks. The
* inclusion of the WMM Parameters in beacons, however, is optional.
*/
if (elems->wmm_param &&
(!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_param_len ||
memcmp(bss->wmm_ie, elems->wmm_param, elems->wmm_param_len))) {
kfree(bss->wmm_ie);
bss->wmm_ie = kmalloc(elems->wmm_param_len + 2, GFP_ATOMIC);
if (bss->wmm_ie) {
memcpy(bss->wmm_ie, elems->wmm_param - 2,
elems->wmm_param_len + 2);
bss->wmm_ie_len = elems->wmm_param_len + 2;
} else
bss->wmm_ie_len = 0;
} else if (elems->wmm_info &&
(!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_info_len ||
memcmp(bss->wmm_ie, elems->wmm_info,
elems->wmm_info_len))) {
/* As for certain AP's Fifth bit is not set in WMM IE in
* beacon frames.So while parsing the beacon frame the
* wmm_info structure is used instead of wmm_param.
* wmm_info structure was never used to set bss->wmm_ie.
* This code fixes this problem by copying the WME
* information from wmm_info to bss->wmm_ie and enabling
* n-band association.
*/
kfree(bss->wmm_ie);
bss->wmm_ie = kmalloc(elems->wmm_info_len + 2, GFP_ATOMIC);
if (bss->wmm_ie) {
memcpy(bss->wmm_ie, elems->wmm_info - 2,
elems->wmm_info_len + 2);
bss->wmm_ie_len = elems->wmm_info_len + 2;
} else
bss->wmm_ie_len = 0;
} else if (!elems->wmm_param && !elems->wmm_info && bss->wmm_ie) {
kfree(bss->wmm_ie);
bss->wmm_ie = NULL;
bss->wmm_ie_len = 0;
}
/* check if we need to merge IBSS */
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
!local->sta_sw_scanning && !local->sta_hw_scanning &&
bss->capability & WLAN_CAPABILITY_IBSS &&
bss->freq == local->oper_channel->center_freq &&
elems->ssid_len == sdata->u.sta.ssid_len &&
memcmp(elems->ssid, sdata->u.sta.ssid,
sdata->u.sta.ssid_len) == 0) {
if (rx_status->flag & RX_FLAG_TSFT) {
/* in order for correct IBSS merging we need mactime
*
* since mactime is defined as the time the first data
* symbol of the frame hits the PHY, and the timestamp
* of the beacon is defined as "the time that the data
* symbol containing the first bit of the timestamp is
* transmitted to the PHY plus the transmitting STA’s
* delays through its local PHY from the MAC-PHY
* interface to its interface with the WM"
* (802.11 11.1.2) - equals the time this bit arrives at
* the receiver - we have to take into account the
* offset between the two.
* e.g: at 1 MBit that means mactime is 192 usec earlier
* (=24 bytes * 8 usecs/byte) than the beacon timestamp.
*/
int rate = local->hw.wiphy->bands[rx_status->band]->
bitrates[rx_status->rate_idx].bitrate;
rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
} else if (local && local->ops && local->ops->get_tsf)
/* second best option: get current TSF */
rx_timestamp = local->ops->get_tsf(local_to_hw(local));
else
/* can't merge without knowing the TSF */
rx_timestamp = -1LLU;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "RX beacon SA=%s BSSID="
"%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
print_mac(mac, mgmt->sa),
print_mac(mac2, mgmt->bssid),
(unsigned long long)rx_timestamp,
(unsigned long long)beacon_timestamp,
(unsigned long long)(rx_timestamp - beacon_timestamp),
jiffies);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (beacon_timestamp > rx_timestamp) {
#ifndef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: beacon TSF higher than "
"local TSF - IBSS merge with BSSID %s\n",
dev->name, print_mac(mac, mgmt->bssid));
#endif
ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
ieee80211_ibss_add_sta(dev, NULL,
mgmt->bssid, mgmt->sa,
BIT(rx_status->rate_idx));
}
}
ieee80211_rx_bss_put(local, bss);
}
static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
size_t baselen;
struct ieee802_11_elems elems;
baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
if (baselen > len)
return;
ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen,
&elems);
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 0);
}
static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
size_t baselen;
struct ieee802_11_elems elems;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_conf *conf = &local->hw.conf;
u32 changed = 0;
/* Process beacon from the current BSS */
baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
if (baselen > len)
return;
ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 1);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
return;
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
/* Do not send changes to driver if we are scanning. This removes
* requirement that driver's bss_info_changed function needs to be
* atomic. */
if (local->sta_sw_scanning || local->sta_hw_scanning)
return;
if (elems.erp_info && elems.erp_info_len >= 1)
changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
else {
u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
changed |= ieee80211_handle_protect_preamb(sdata, false,
(capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
}
if (elems.ht_cap_elem && elems.ht_info_elem &&
elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
struct ieee80211_ht_bss_info bss_info;
ieee80211_ht_addt_info_ie_to_ht_bss_info(
(struct ieee80211_ht_addt_info *)
elems.ht_info_elem, &bss_info);
changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
&bss_info);
}
ieee80211_bss_info_change_notify(sdata, changed);
}
static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int tx_last_beacon;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
u8 *pos, *end;
DECLARE_MAC_BUF(mac);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
DECLARE_MAC_BUF(mac2);
DECLARE_MAC_BUF(mac3);
#endif
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
ifsta->state != IEEE80211_IBSS_JOINED ||
len < 24 + 2 || !ifsta->probe_resp)
return;
if (local->ops->tx_last_beacon)
tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
else
tx_last_beacon = 1;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
"%s (tx_last_beacon=%d)\n",
dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
print_mac(mac3, mgmt->bssid), tx_last_beacon);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (!tx_last_beacon)
return;
if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
return;
end = ((u8 *) mgmt) + len;
pos = mgmt->u.probe_req.variable;
if (pos[0] != WLAN_EID_SSID ||
pos + 2 + pos[1] > end) {
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
"from %s\n",
dev->name, print_mac(mac, mgmt->sa));
#endif
return;
}
if (pos[1] != 0 &&
(pos[1] != ifsta->ssid_len ||
memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
/* Ignore ProbeReq for foreign SSID */
return;
}
/* Reply with ProbeResp */
skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
if (!skb)
return;
resp = (struct ieee80211_mgmt *) skb->data;
memcpy(resp->da, mgmt->sa, ETH_ALEN);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
dev->name, print_mac(mac, resp->da));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_rx_mgmt_action(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (len < IEEE80211_MIN_ACTION_SIZE)
return;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_SPECTRUM_MGMT:
if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
break;
switch (mgmt->u.action.u.chan_switch.action_code) {
case WLAN_ACTION_SPCT_MSR_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.measurement)))
break;
ieee80211_sta_process_measurement_req(dev, mgmt, len);
break;
}
break;
case WLAN_CATEGORY_BACK:
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_req)))
break;
ieee80211_sta_process_addba_request(dev, mgmt, len);
break;
case WLAN_ACTION_ADDBA_RESP:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_resp)))
break;
ieee80211_sta_process_addba_resp(dev, mgmt, len);
break;
case WLAN_ACTION_DELBA:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.delba)))
break;
ieee80211_sta_process_delba(dev, mgmt, len);
break;
}
break;
case PLINK_CATEGORY:
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_rx_plink_frame(dev, mgmt, len, rx_status);
break;
case MESH_PATH_SEL_CATEGORY:
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_rx_path_sel_frame(dev, mgmt, len);
break;
}
}
void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
if (skb->len < 24)
goto fail;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
case IEEE80211_STYPE_PROBE_RESP:
case IEEE80211_STYPE_BEACON:
case IEEE80211_STYPE_ACTION:
memcpy(skb->cb, rx_status, sizeof(*rx_status));
case IEEE80211_STYPE_AUTH:
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:
case IEEE80211_STYPE_DEAUTH:
case IEEE80211_STYPE_DISASSOC:
skb_queue_tail(&ifsta->skb_queue, skb);
queue_work(local->hw.workqueue, &ifsta->work);
return;
}
fail:
kfree_skb(skb);
}
static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
rx_status = (struct ieee80211_rx_status *) skb->cb;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
rx_status);
break;
case IEEE80211_STYPE_PROBE_RESP:
ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_BEACON:
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_AUTH:
ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_ASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
break;
case IEEE80211_STYPE_REASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
break;
case IEEE80211_STYPE_DEAUTH:
ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_DISASSOC:
ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_ACTION:
ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
break;
}
kfree_skb(skb);
}
ieee80211_rx_result
ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_mgmt *mgmt;
__le16 fc;
if (skb->len < 2)
return RX_DROP_UNUSABLE;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = mgmt->frame_control;
if (ieee80211_is_ctl(fc))
return RX_CONTINUE;
if (skb->len < 24)
return RX_DROP_MONITOR;
if (ieee80211_is_probe_resp(fc)) {
ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
dev_kfree_skb(skb);
return RX_QUEUED;
}
if (ieee80211_is_beacon(fc)) {
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
dev_kfree_skb(skb);
return RX_QUEUED;
}
return RX_CONTINUE;
}
static int ieee80211_sta_active_ibss(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int active = 0;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sta->sdata == sdata &&
time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
jiffies)) {
active++;
break;
}
}
rcu_read_unlock();
return active;
}
static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta, *tmp;
LIST_HEAD(tmp_list);
DECLARE_MAC_BUF(mac);
unsigned long flags;
spin_lock_irqsave(&local->sta_lock, flags);
list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
if (time_after(jiffies, sta->last_rx + exp_time)) {
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
dev->name, print_mac(mac, sta->addr));
#endif
__sta_info_unlink(&sta);
if (sta)
list_add(&sta->list, &tmp_list);
}
spin_unlock_irqrestore(&local->sta_lock, flags);
list_for_each_entry_safe(sta, tmp, &tmp_list, list)
sta_info_destroy(sta);
}
static void ieee80211_sta_merge_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
if (ieee80211_sta_active_ibss(dev))
return;
printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
"IBSS networks with same SSID (merge)\n", dev->name);
ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
}
#ifdef CONFIG_MAC80211_MESH
static void ieee80211_mesh_housekeeping(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
bool free_plinks;
ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
mesh_path_expire(dev);
free_plinks = mesh_plink_availables(sdata);
if (free_plinks != sdata->u.sta.accepting_plinks)
ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
}
void ieee80211_start_mesh(struct net_device *dev)
{
struct ieee80211_if_sta *ifsta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
ifsta->state = IEEE80211_MESH_UP;
ieee80211_sta_timer((unsigned long)sdata);
ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
}
#endif
void ieee80211_sta_timer(unsigned long data)
{
struct ieee80211_sub_if_data *sdata =
(struct ieee80211_sub_if_data *) data;
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(&sdata->wdev);
set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
void ieee80211_sta_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data, u.sta.work);
struct net_device *dev = sdata->dev;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_if_sta *ifsta;
struct sk_buff *skb;
if (!netif_running(dev))
return;
if (local->sta_sw_scanning || local->sta_hw_scanning)
return;
if (WARN_ON(sdata->vif.type != IEEE80211_IF_TYPE_STA &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
return;
ifsta = &sdata->u.sta;
while ((skb = skb_dequeue(&ifsta->skb_queue)))
ieee80211_sta_rx_queued_mgmt(dev, skb);
#ifdef CONFIG_MAC80211_MESH
if (ifsta->preq_queue_len &&
time_after(jiffies,
ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
mesh_path_start_discovery(dev);
#endif
if (ifsta->state != IEEE80211_AUTHENTICATE &&
ifsta->state != IEEE80211_ASSOCIATE &&
test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
if (ifsta->scan_ssid_len)
ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
else
ieee80211_sta_start_scan(dev, NULL, 0);
return;
}
if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
if (ieee80211_sta_config_auth(dev, ifsta))
return;
clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
} else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
return;
switch (ifsta->state) {
case IEEE80211_DISABLED:
break;
case IEEE80211_AUTHENTICATE:
ieee80211_authenticate(dev, ifsta);
break;
case IEEE80211_ASSOCIATE:
ieee80211_associate(dev, ifsta);
break;
case IEEE80211_ASSOCIATED:
ieee80211_associated(dev, ifsta);
break;
case IEEE80211_IBSS_SEARCH:
ieee80211_sta_find_ibss(dev, ifsta);
break;
case IEEE80211_IBSS_JOINED:
ieee80211_sta_merge_ibss(dev, ifsta);
break;
#ifdef CONFIG_MAC80211_MESH
case IEEE80211_MESH_UP:
ieee80211_mesh_housekeeping(dev, ifsta);
break;
#endif
default:
WARN_ON(1);
break;
}
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: privacy configuration mismatch and "
"mixed-cell disabled - disassociate\n", dev->name);
ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
ieee80211_set_disassoc(dev, ifsta, 0);
}
}
static void ieee80211_sta_reset_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
ifsta->wmm_last_param_set = -1; /* allow any WMM update */
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
ifsta->auth_alg = WLAN_AUTH_OPEN;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
ifsta->auth_alg = WLAN_AUTH_LEAP;
else
ifsta->auth_alg = WLAN_AUTH_OPEN;
ifsta->auth_transaction = -1;
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
ifsta->auth_tries = ifsta->assoc_tries = 0;
netif_carrier_off(dev);
}
void ieee80211_sta_req_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
IEEE80211_STA_AUTO_BSSID_SEL)) &&
(ifsta->flags & (IEEE80211_STA_SSID_SET |
IEEE80211_STA_AUTO_SSID_SEL))) {
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
}
static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
const char *ssid, int ssid_len)
{
int tmp, hidden_ssid;
if (ssid_len == ifsta->ssid_len &&
!memcmp(ifsta->ssid, ssid, ssid_len))
return 1;
if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
return 0;
hidden_ssid = 1;
tmp = ssid_len;
while (tmp--) {
if (ssid[tmp] != '\0') {
hidden_ssid = 0;
break;
}
}
if (hidden_ssid && ifsta->ssid_len == ssid_len)
return 1;
if (ssid_len == 1 && ssid[0] == ' ')
return 1;
return 0;
}
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sta_bss *bss, *selected = NULL;
int top_rssi = 0, freq;
spin_lock_bh(&local->sta_bss_lock);
freq = local->oper_channel->center_freq;
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (!(bss->capability & WLAN_CAPABILITY_ESS))
continue;
if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
IEEE80211_STA_AUTO_BSSID_SEL |
IEEE80211_STA_AUTO_CHANNEL_SEL)) &&
(!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
!!sdata->default_key))
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
bss->freq != freq)
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
!ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
continue;
if (!selected || top_rssi < bss->signal) {
selected = bss;
top_rssi = bss->signal;
}
}
if (selected)
atomic_inc(&selected->users);
spin_unlock_bh(&local->sta_bss_lock);
if (selected) {
ieee80211_set_freq(dev, selected->freq);
if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
ieee80211_sta_set_ssid(dev, selected->ssid,
selected->ssid_len);
ieee80211_sta_set_bssid(dev, selected->bssid);
ieee80211_sta_def_wmm_params(dev, selected, 0);
ieee80211_rx_bss_put(local, selected);
ifsta->state = IEEE80211_AUTHENTICATE;
ieee80211_sta_reset_auth(dev, ifsta);
return 0;
} else {
if (ifsta->state != IEEE80211_AUTHENTICATE) {
if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
ieee80211_sta_start_scan(dev, NULL, 0);
else
ieee80211_sta_start_scan(dev, ifsta->ssid,
ifsta->ssid_len);
ifsta->state = IEEE80211_AUTHENTICATE;
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
} else
ifsta->state = IEEE80211_DISABLED;
}
return -1;
}
static int ieee80211_sta_create_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_supported_band *sband;
u8 bssid[ETH_ALEN], *pos;
int i;
int ret;
DECLARE_MAC_BUF(mac);
#if 0
/* Easier testing, use fixed BSSID. */
memset(bssid, 0xfe, ETH_ALEN);
#else
/* Generate random, not broadcast, locally administered BSSID. Mix in
* own MAC address to make sure that devices that do not have proper
* random number generator get different BSSID. */
get_random_bytes(bssid, ETH_ALEN);
for (i = 0; i < ETH_ALEN; i++)
bssid[i] ^= dev->dev_addr[i];
bssid[0] &= ~0x01;
bssid[0] |= 0x02;
#endif
printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
dev->name, print_mac(mac, bssid));
bss = ieee80211_rx_bss_add(dev, bssid,
local->hw.conf.channel->center_freq,
sdata->u.sta.ssid, sdata->u.sta.ssid_len);
if (!bss)
return -ENOMEM;
bss->band = local->hw.conf.channel->band;
sband = local->hw.wiphy->bands[bss->band];
if (local->hw.conf.beacon_int == 0)
local->hw.conf.beacon_int = 100;
bss->beacon_int = local->hw.conf.beacon_int;
bss->last_update = jiffies;
bss->capability = WLAN_CAPABILITY_IBSS;
if (sdata->default_key)
bss->capability |= WLAN_CAPABILITY_PRIVACY;
else
sdata->drop_unencrypted = 0;
bss->supp_rates_len = sband->n_bitrates;
pos = bss->supp_rates;
for (i = 0; i < sband->n_bitrates; i++) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
}
ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
ieee80211_rx_bss_put(local, bss);
return ret;
}
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
int found = 0;
u8 bssid[ETH_ALEN];
int active_ibss;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
if (ifsta->ssid_len == 0)
return -EINVAL;
active_ibss = ieee80211_sta_active_ibss(dev);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
dev->name, active_ibss);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (ifsta->ssid_len != bss->ssid_len ||
memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
|| !(bss->capability & WLAN_CAPABILITY_IBSS))
continue;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " bssid=%s found\n",
print_mac(mac, bss->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
memcpy(bssid, bss->bssid, ETH_ALEN);
found = 1;
if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
break;
}
spin_unlock_bh(&local->sta_bss_lock);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
if (found)
printk(KERN_DEBUG " sta_find_ibss: selected %s current "
"%s\n", print_mac(mac, bssid),
print_mac(mac2, ifsta->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
(bss = ieee80211_rx_bss_get(dev, bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len))) {
int ret;
printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
" based on configured SSID\n",
dev->name, print_mac(mac, bssid));
ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
ieee80211_rx_bss_put(local, bss);
return ret;
}
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " did not try to join ibss\n");
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
/* Selected IBSS not found in current scan results - try to scan */
if (ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)) {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_IBSS_MERGE_INTERVAL);
} else if (time_after(jiffies, local->last_scan_completed +
IEEE80211_SCAN_INTERVAL)) {
printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
"join\n", dev->name);
return ieee80211_sta_req_scan(dev, ifsta->ssid,
ifsta->ssid_len);
} else if (ifsta->state != IEEE80211_IBSS_JOINED) {
int interval = IEEE80211_SCAN_INTERVAL;
if (time_after(jiffies, ifsta->ibss_join_req +
IEEE80211_IBSS_JOIN_TIMEOUT)) {
if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
(!(local->oper_channel->flags &
IEEE80211_CHAN_NO_IBSS)))
return ieee80211_sta_create_ibss(dev, ifsta);
if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
printk(KERN_DEBUG "%s: IBSS not allowed on"
" %d MHz\n", dev->name,
local->hw.conf.channel->center_freq);
}
/* No IBSS found - decrease scan interval and continue
* scanning. */
interval = IEEE80211_SCAN_INTERVAL_SLOW;
}
ifsta->state = IEEE80211_IBSS_SEARCH;
mod_timer(&ifsta->timer, jiffies + interval);
return 0;
}
return 0;
}
int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta;
int res;
if (len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
ifsta = &sdata->u.sta;
if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0) {
memset(ifsta->ssid, 0, sizeof(ifsta->ssid));
memcpy(ifsta->ssid, ssid, len);
ifsta->ssid_len = len;
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
res = 0;
/*
* Hack! MLME code needs to be cleaned up to have different
* entry points for configuration and internal selection change
*/
if (netif_running(sdata->dev))
res = ieee80211_if_config(sdata, IEEE80211_IFCC_SSID);
if (res) {
printk(KERN_DEBUG "%s: Failed to config new SSID to "
"the low-level driver\n", dev->name);
return res;
}
}
if (len)
ifsta->flags |= IEEE80211_STA_SSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_SSID_SET;
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
!(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
ifsta->ibss_join_req = jiffies;
ifsta->state = IEEE80211_IBSS_SEARCH;
return ieee80211_sta_find_ibss(dev, ifsta);
}
return 0;
}
int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
*len = ifsta->ssid_len;
return 0;
}
int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
memcpy(ifsta->bssid, bssid, ETH_ALEN);
res = 0;
/*
* Hack! See also ieee80211_sta_set_ssid.
*/
if (netif_running(sdata->dev))
res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID);
if (res) {
printk(KERN_DEBUG "%s: Failed to config new BSSID to "
"the low-level driver\n", dev->name);
return res;
}
}
if (is_valid_ether_addr(bssid))
ifsta->flags |= IEEE80211_STA_BSSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
return 0;
}
static void ieee80211_send_nullfunc(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
int powersave)
{
struct sk_buff *skb;
struct ieee80211_hdr *nullfunc;
__le16 fc;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
"frame\n", sdata->dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
memset(nullfunc, 0, 24);
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS);
if (powersave)
fc |= cpu_to_le16(IEEE80211_FCTL_PM);
nullfunc->frame_control = fc;
memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_tx(sdata->dev, skb, 0);
}
static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
ieee80211_vif_is_mesh(&sdata->vif))
ieee80211_sta_timer((unsigned long)sdata);
}
void ieee80211_scan_completed(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata;
union iwreq_data wrqu;
local->last_scan_completed = jiffies;
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
if (local->sta_hw_scanning) {
local->sta_hw_scanning = 0;
if (ieee80211_hw_config(local))
printk(KERN_DEBUG "%s: failed to restore operational "
"channel after scan\n", dev->name);
/* Restart STA timer for HW scan case */
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list)
ieee80211_restart_sta_timer(sdata);
rcu_read_unlock();
goto done;
}
local->sta_sw_scanning = 0;
if (ieee80211_hw_config(local))
printk(KERN_DEBUG "%s: failed to restore operational "
"channel after scan\n", dev->name);
netif_tx_lock_bh(local->mdev);
netif_addr_lock(local->mdev);
local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
local->ops->configure_filter(local_to_hw(local),
FIF_BCN_PRBRESP_PROMISC,
&local->filter_flags,
local->mdev->mc_count,
local->mdev->mc_list);
netif_addr_unlock(local->mdev);
netif_tx_unlock_bh(local->mdev);
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
/* Tell AP we're back */
if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
ieee80211_send_nullfunc(local, sdata, 0);
ieee80211_restart_sta_timer(sdata);
netif_wake_queue(sdata->dev);
}
rcu_read_unlock();
done:
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
(!ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)))
ieee80211_sta_find_ibss(dev, ifsta);
}
}
EXPORT_SYMBOL(ieee80211_scan_completed);
void ieee80211_sta_scan_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, scan_work.work);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
int skip;
unsigned long next_delay = 0;
if (!local->sta_sw_scanning)
return;
switch (local->scan_state) {
case SCAN_SET_CHANNEL:
/*
* Get current scan band. scan_band may be IEEE80211_NUM_BANDS
* after we successfully scanned the last channel of the last
* band (and the last band is supported by the hw)
*/
if (local->scan_band < IEEE80211_NUM_BANDS)
sband = local->hw.wiphy->bands[local->scan_band];
else
sband = NULL;
/*
* If we are at an unsupported band and have more bands
* left to scan, advance to the next supported one.
*/
while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
local->scan_band++;
sband = local->hw.wiphy->bands[local->scan_band];
local->scan_channel_idx = 0;
}
/* if no more bands/channels left, complete scan */
if (!sband || local->scan_channel_idx >= sband->n_channels) {
ieee80211_scan_completed(local_to_hw(local));
return;
}
skip = 0;
chan = &sband->channels[local->scan_channel_idx];
if (chan->flags & IEEE80211_CHAN_DISABLED ||
(sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
chan->flags & IEEE80211_CHAN_NO_IBSS))
skip = 1;
if (!skip) {
local->scan_channel = chan;
if (ieee80211_hw_config(local)) {
printk(KERN_DEBUG "%s: failed to set freq to "
"%d MHz for scan\n", dev->name,
chan->center_freq);
skip = 1;
}
}
/* advance state machine to next channel/band */
local->scan_channel_idx++;
if (local->scan_channel_idx >= sband->n_channels) {
/*
* scan_band may end up == IEEE80211_NUM_BANDS, but
* we'll catch that case above and complete the scan
* if that is the case.
*/
local->scan_band++;
local->scan_channel_idx = 0;
}
if (skip)
break;
next_delay = IEEE80211_PROBE_DELAY +
usecs_to_jiffies(local->hw.channel_change_time);
local->scan_state = SCAN_SEND_PROBE;
break;
case SCAN_SEND_PROBE:
next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
local->scan_state = SCAN_SET_CHANNEL;
if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
break;
ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
local->scan_ssid_len);
next_delay = IEEE80211_CHANNEL_TIME;
break;
}
if (local->sta_sw_scanning)
queue_delayed_work(local->hw.workqueue, &local->scan_work,
next_delay);
}
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
if (ssid_len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
/* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
* BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
* BSSID: MACAddress
* SSID
* ScanType: ACTIVE, PASSIVE
* ProbeDelay: delay (in microseconds) to be used prior to transmitting
* a Probe frame during active scanning
* ChannelList
* MinChannelTime (>= ProbeDelay), in TU
* MaxChannelTime: (>= MinChannelTime), in TU
*/
/* MLME-SCAN.confirm
* BSSDescriptionSet
* ResultCode: SUCCESS, INVALID_PARAMETERS
*/
if (local->sta_sw_scanning || local->sta_hw_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
if (local->ops->hw_scan) {
int rc = local->ops->hw_scan(local_to_hw(local),
ssid, ssid_len);
if (!rc) {
local->sta_hw_scanning = 1;
local->scan_dev = dev;
}
return rc;
}
local->sta_sw_scanning = 1;
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
netif_stop_queue(sdata->dev);
if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
(sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
ieee80211_send_nullfunc(local, sdata, 1);
}
rcu_read_unlock();
if (ssid) {
local->scan_ssid_len = ssid_len;
memcpy(local->scan_ssid, ssid, ssid_len);
} else
local->scan_ssid_len = 0;
local->scan_state = SCAN_SET_CHANNEL;
local->scan_channel_idx = 0;
local->scan_band = IEEE80211_BAND_2GHZ;
local->scan_dev = dev;
netif_addr_lock_bh(local->mdev);
local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
local->ops->configure_filter(local_to_hw(local),
FIF_BCN_PRBRESP_PROMISC,
&local->filter_flags,
local->mdev->mc_count,
local->mdev->mc_list);
netif_addr_unlock_bh(local->mdev);
/* TODO: start scan as soon as all nullfunc frames are ACKed */
queue_delayed_work(local->hw.workqueue, &local->scan_work,
IEEE80211_CHANNEL_TIME);
return 0;
}
int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return ieee80211_sta_start_scan(dev, ssid, ssid_len);
if (local->sta_sw_scanning || local->sta_hw_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
ifsta->scan_ssid_len = ssid_len;
if (ssid_len)
memcpy(ifsta->scan_ssid, ssid, ssid_len);
set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
return 0;
}
static char *
ieee80211_sta_scan_result(struct net_device *dev,
struct iw_request_info *info,
struct ieee80211_sta_bss *bss,
char *current_ev, char *end_buf)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iw_event iwe;
if (time_after(jiffies,
bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
if (bss_mesh_cfg(bss)) {
iwe.u.data.length = bss_mesh_id_len(bss);
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss_mesh_id(bss));
} else {
iwe.u.data.length = bss->ssid_len;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->ssid);
}
if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
|| bss_mesh_cfg(bss)) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (bss_mesh_cfg(bss))
iwe.u.mode = IW_MODE_MESH;
else if (bss->capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(info, current_ev, end_buf,
&iwe, IW_EV_UINT_LEN);
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.qual = bss->qual;
iwe.u.qual.level = bss->signal;
iwe.u.qual.noise = bss->noise;
iwe.u.qual.updated = local->wstats_flags;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_QUAL_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, "");
if (bss && bss->wpa_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->wpa_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->wpa_ie);
}
if (bss && bss->rsn_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->rsn_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->rsn_ie);
}
if (bss && bss->ht_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->ht_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->ht_ie);
}
if (bss && bss->supp_rates_len > 0) {
/* display all supported rates in readable format */
char *p = current_ev + iwe_stream_lcp_len(info);
int i;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < bss->supp_rates_len; i++) {
iwe.u.bitrate.value = ((bss->supp_rates[i] &
0x7f) * 500000);
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe, IW_EV_PARAM_LEN);
}
current_ev = p;
}
if (bss) {
char *buf;
buf = kmalloc(30, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, " Last beacon: %dms ago",
jiffies_to_msecs(jiffies - bss->last_update));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, buf);
kfree(buf);
}
}
if (bss_mesh_cfg(bss)) {
char *buf;
u8 *cfg = bss_mesh_cfg(bss);
buf = kmalloc(50, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "Mesh network (version %d)", cfg[0]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Path Selection Protocol ID: "
"0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
cfg[4]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Path Selection Metric ID: "
"0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
cfg[8]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Congestion Control Mode ID: "
"0x%02X%02X%02X%02X", cfg[9], cfg[10],
cfg[11], cfg[12]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Channel Precedence: "
"0x%02X%02X%02X%02X", cfg[13], cfg[14],
cfg[15], cfg[16]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
kfree(buf);
}
}
return current_ev;
}
int ieee80211_sta_scan_results(struct net_device *dev,
struct iw_request_info *info,
char *buf, size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
char *current_ev = buf;
char *end_buf = buf + len;
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
spin_unlock_bh(&local->sta_bss_lock);
return -E2BIG;
}
current_ev = ieee80211_sta_scan_result(dev, info, bss,
current_ev, end_buf);
}
spin_unlock_bh(&local->sta_bss_lock);
return current_ev - buf;
}
int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
kfree(ifsta->extra_ie);
if (len == 0) {
ifsta->extra_ie = NULL;
ifsta->extra_ie_len = 0;
return 0;
}
ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
if (!ifsta->extra_ie) {
ifsta->extra_ie_len = 0;
return -ENOMEM;
}
memcpy(ifsta->extra_ie, ie, len);
ifsta->extra_ie_len = len;
return 0;
}
struct sta_info *ieee80211_ibss_add_sta(struct net_device *dev,
struct sk_buff *skb, u8 *bssid,
u8 *addr, u64 supp_rates)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
DECLARE_MAC_BUF(mac);
int band = local->hw.conf.channel->band;
/* TODO: Could consider removing the least recently used entry and
* allow new one to be added. */
if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: No room for a new IBSS STA "
"entry %s\n", dev->name, print_mac(mac, addr));
}
return NULL;
}
if (compare_ether_addr(bssid, sdata->u.sta.bssid))
return NULL;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
#endif
sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
if (!sta)
return NULL;
set_sta_flags(sta, WLAN_STA_AUTHORIZED);
if (supp_rates)
sta->supp_rates[band] = supp_rates;
else
sta->supp_rates[band] = sdata->u.sta.supp_rates_bits[band];
rate_control_rate_init(sta, local);
if (sta_info_insert(sta))
return NULL;
return sta;
}
int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: deauthenticating by local choice (reason=%d)\n",
dev->name, reason);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
return -EINVAL;
ieee80211_send_deauth(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 1);
return 0;
}
int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: disassociating by local choice (reason=%d)\n",
dev->name, reason);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return -EINVAL;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
return -1;
ieee80211_send_disassoc(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 0);
return 0;
}
void ieee80211_notify_mac(struct ieee80211_hw *hw,
enum ieee80211_notification_types notif_type)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
switch (notif_type) {
case IEEE80211_NOTIFY_RE_ASSOC:
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
continue;
ieee80211_sta_req_auth(sdata->dev, &sdata->u.sta);
}
rcu_read_unlock();
break;
}
}
EXPORT_SYMBOL(ieee80211_notify_mac);