| /* |
| * Copyright 2001 MontaVista Software Inc. |
| * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net |
| * Copyright (c) 2003, 2004 Maciej W. Rozycki |
| * |
| * Common time service routines for MIPS machines. See |
| * Documentation/mips/time.README. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/param.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/smp.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| |
| #include <asm/bootinfo.h> |
| #include <asm/cache.h> |
| #include <asm/compiler.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-features.h> |
| #include <asm/div64.h> |
| #include <asm/sections.h> |
| #include <asm/time.h> |
| |
| /* |
| * The integer part of the number of usecs per jiffy is taken from tick, |
| * but the fractional part is not recorded, so we calculate it using the |
| * initial value of HZ. This aids systems where tick isn't really an |
| * integer (e.g. for HZ = 128). |
| */ |
| #define USECS_PER_JIFFY TICK_SIZE |
| #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) |
| |
| #define TICK_SIZE (tick_nsec / 1000) |
| |
| /* |
| * forward reference |
| */ |
| DEFINE_SPINLOCK(rtc_lock); |
| |
| /* |
| * By default we provide the null RTC ops |
| */ |
| static unsigned long null_rtc_get_time(void) |
| { |
| return mktime(2000, 1, 1, 0, 0, 0); |
| } |
| |
| static int null_rtc_set_time(unsigned long sec) |
| { |
| return 0; |
| } |
| |
| unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time; |
| int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time; |
| int (*rtc_mips_set_mmss)(unsigned long); |
| |
| |
| /* usecs per counter cycle, shifted to left by 32 bits */ |
| static unsigned int sll32_usecs_per_cycle; |
| |
| /* how many counter cycles in a jiffy */ |
| static unsigned long cycles_per_jiffy __read_mostly; |
| |
| /* Cycle counter value at the previous timer interrupt.. */ |
| static unsigned int timerhi, timerlo; |
| |
| /* expirelo is the count value for next CPU timer interrupt */ |
| static unsigned int expirelo; |
| |
| |
| /* |
| * Null timer ack for systems not needing one (e.g. i8254). |
| */ |
| static void null_timer_ack(void) { /* nothing */ } |
| |
| /* |
| * Null high precision timer functions for systems lacking one. |
| */ |
| static unsigned int null_hpt_read(void) |
| { |
| return 0; |
| } |
| |
| static void null_hpt_init(unsigned int count) |
| { |
| /* nothing */ |
| } |
| |
| |
| /* |
| * Timer ack for an R4k-compatible timer of a known frequency. |
| */ |
| static void c0_timer_ack(void) |
| { |
| unsigned int count; |
| |
| #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */ |
| /* Ack this timer interrupt and set the next one. */ |
| expirelo += cycles_per_jiffy; |
| #endif |
| write_c0_compare(expirelo); |
| |
| /* Check to see if we have missed any timer interrupts. */ |
| while (((count = read_c0_count()) - expirelo) < 0x7fffffff) { |
| /* missed_timer_count++; */ |
| expirelo = count + cycles_per_jiffy; |
| write_c0_compare(expirelo); |
| } |
| } |
| |
| /* |
| * High precision timer functions for a R4k-compatible timer. |
| */ |
| static unsigned int c0_hpt_read(void) |
| { |
| return read_c0_count(); |
| } |
| |
| /* For use solely as a high precision timer. */ |
| static void c0_hpt_init(unsigned int count) |
| { |
| write_c0_count(read_c0_count() - count); |
| } |
| |
| /* For use both as a high precision timer and an interrupt source. */ |
| static void c0_hpt_timer_init(unsigned int count) |
| { |
| count = read_c0_count() - count; |
| expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; |
| write_c0_count(expirelo - cycles_per_jiffy); |
| write_c0_compare(expirelo); |
| write_c0_count(count); |
| } |
| |
| int (*mips_timer_state)(void); |
| void (*mips_timer_ack)(void); |
| unsigned int (*mips_hpt_read)(void); |
| void (*mips_hpt_init)(unsigned int); |
| |
| /* |
| * Gettimeoffset routines. These routines returns the time duration |
| * since last timer interrupt in usecs. |
| * |
| * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. |
| * Otherwise use calibrate_gettimeoffset() |
| * |
| * If the CPU does not have the counter register, you can either supply |
| * your own gettimeoffset() routine, or use null_gettimeoffset(), which |
| * gives the same resolution as HZ. |
| */ |
| |
| static unsigned long null_gettimeoffset(void) |
| { |
| return 0; |
| } |
| |
| |
| /* The function pointer to one of the gettimeoffset funcs. */ |
| unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; |
| |
| |
| static unsigned long fixed_rate_gettimeoffset(void) |
| { |
| u32 count; |
| unsigned long res; |
| |
| /* Get last timer tick in absolute kernel time */ |
| count = mips_hpt_read(); |
| |
| /* .. relative to previous jiffy (32 bits is enough) */ |
| count -= timerlo; |
| |
| __asm__("multu %1,%2" |
| : "=h" (res) |
| : "r" (count), "r" (sll32_usecs_per_cycle) |
| : "lo", GCC_REG_ACCUM); |
| |
| /* |
| * Due to possible jiffies inconsistencies, we need to check |
| * the result so that we'll get a timer that is monotonic. |
| */ |
| if (res >= USECS_PER_JIFFY) |
| res = USECS_PER_JIFFY - 1; |
| |
| return res; |
| } |
| |
| |
| /* |
| * Cached "1/(clocks per usec) * 2^32" value. |
| * It has to be recalculated once each jiffy. |
| */ |
| static unsigned long cached_quotient; |
| |
| /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ |
| static unsigned long last_jiffies; |
| |
| /* |
| * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. |
| */ |
| static unsigned long calibrate_div32_gettimeoffset(void) |
| { |
| u32 count; |
| unsigned long res, tmp; |
| unsigned long quotient; |
| |
| tmp = jiffies; |
| |
| quotient = cached_quotient; |
| |
| if (last_jiffies != tmp) { |
| last_jiffies = tmp; |
| if (last_jiffies != 0) { |
| unsigned long r0; |
| do_div64_32(r0, timerhi, timerlo, tmp); |
| do_div64_32(quotient, USECS_PER_JIFFY, |
| USECS_PER_JIFFY_FRAC, r0); |
| cached_quotient = quotient; |
| } |
| } |
| |
| /* Get last timer tick in absolute kernel time */ |
| count = mips_hpt_read(); |
| |
| /* .. relative to previous jiffy (32 bits is enough) */ |
| count -= timerlo; |
| |
| __asm__("multu %1,%2" |
| : "=h" (res) |
| : "r" (count), "r" (quotient) |
| : "lo", GCC_REG_ACCUM); |
| |
| /* |
| * Due to possible jiffies inconsistencies, we need to check |
| * the result so that we'll get a timer that is monotonic. |
| */ |
| if (res >= USECS_PER_JIFFY) |
| res = USECS_PER_JIFFY - 1; |
| |
| return res; |
| } |
| |
| static unsigned long calibrate_div64_gettimeoffset(void) |
| { |
| u32 count; |
| unsigned long res, tmp; |
| unsigned long quotient; |
| |
| tmp = jiffies; |
| |
| quotient = cached_quotient; |
| |
| if (last_jiffies != tmp) { |
| last_jiffies = tmp; |
| if (last_jiffies) { |
| unsigned long r0; |
| __asm__(".set push\n\t" |
| ".set mips3\n\t" |
| "lwu %0,%3\n\t" |
| "dsll32 %1,%2,0\n\t" |
| "or %1,%1,%0\n\t" |
| "ddivu $0,%1,%4\n\t" |
| "mflo %1\n\t" |
| "dsll32 %0,%5,0\n\t" |
| "or %0,%0,%6\n\t" |
| "ddivu $0,%0,%1\n\t" |
| "mflo %0\n\t" |
| ".set pop" |
| : "=&r" (quotient), "=&r" (r0) |
| : "r" (timerhi), "m" (timerlo), |
| "r" (tmp), "r" (USECS_PER_JIFFY), |
| "r" (USECS_PER_JIFFY_FRAC) |
| : "hi", "lo", GCC_REG_ACCUM); |
| cached_quotient = quotient; |
| } |
| } |
| |
| /* Get last timer tick in absolute kernel time */ |
| count = mips_hpt_read(); |
| |
| /* .. relative to previous jiffy (32 bits is enough) */ |
| count -= timerlo; |
| |
| __asm__("multu %1,%2" |
| : "=h" (res) |
| : "r" (count), "r" (quotient) |
| : "lo", GCC_REG_ACCUM); |
| |
| /* |
| * Due to possible jiffies inconsistencies, we need to check |
| * the result so that we'll get a timer that is monotonic. |
| */ |
| if (res >= USECS_PER_JIFFY) |
| res = USECS_PER_JIFFY - 1; |
| |
| return res; |
| } |
| |
| |
| /* last time when xtime and rtc are sync'ed up */ |
| static long last_rtc_update; |
| |
| /* |
| * local_timer_interrupt() does profiling and process accounting |
| * on a per-CPU basis. |
| * |
| * In UP mode, it is invoked from the (global) timer_interrupt. |
| * |
| * In SMP mode, it might invoked by per-CPU timer interrupt, or |
| * a broadcasted inter-processor interrupt which itself is triggered |
| * by the global timer interrupt. |
| */ |
| void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| if (current->pid) |
| profile_tick(CPU_PROFILING, regs); |
| update_process_times(user_mode(regs)); |
| } |
| |
| /* |
| * High-level timer interrupt service routines. This function |
| * is set as irqaction->handler and is invoked through do_IRQ. |
| */ |
| irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| unsigned long j; |
| unsigned int count; |
| |
| write_seqlock(&xtime_lock); |
| |
| count = mips_hpt_read(); |
| mips_timer_ack(); |
| |
| /* Update timerhi/timerlo for intra-jiffy calibration. */ |
| timerhi += count < timerlo; /* Wrap around */ |
| timerlo = count; |
| |
| /* |
| * call the generic timer interrupt handling |
| */ |
| do_timer(1); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| if (rtc_mips_set_mmss(xtime.tv_sec) == 0) { |
| last_rtc_update = xtime.tv_sec; |
| } else { |
| /* do it again in 60 s */ |
| last_rtc_update = xtime.tv_sec - 600; |
| } |
| } |
| |
| /* |
| * If jiffies has overflown in this timer_interrupt, we must |
| * update the timer[hi]/[lo] to make fast gettimeoffset funcs |
| * quotient calc still valid. -arca |
| * |
| * The first timer interrupt comes late as interrupts are |
| * enabled long after timers are initialized. Therefore the |
| * high precision timer is fast, leading to wrong gettimeoffset() |
| * calculations. We deal with it by setting it based on the |
| * number of its ticks between the second and the third interrupt. |
| * That is still somewhat imprecise, but it's a good estimate. |
| * --macro |
| */ |
| j = jiffies; |
| if (j < 4) { |
| static unsigned int prev_count; |
| static int hpt_initialized; |
| |
| switch (j) { |
| case 0: |
| timerhi = timerlo = 0; |
| mips_hpt_init(count); |
| break; |
| case 2: |
| prev_count = count; |
| break; |
| case 3: |
| if (!hpt_initialized) { |
| unsigned int c3 = 3 * (count - prev_count); |
| |
| timerhi = 0; |
| timerlo = c3; |
| mips_hpt_init(count - c3); |
| hpt_initialized = 1; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| write_sequnlock(&xtime_lock); |
| |
| /* |
| * In UP mode, we call local_timer_interrupt() to do profiling |
| * and process accouting. |
| * |
| * In SMP mode, local_timer_interrupt() is invoked by appropriate |
| * low-level local timer interrupt handler. |
| */ |
| local_timer_interrupt(irq, dev_id, regs); |
| |
| return IRQ_HANDLED; |
| } |
| |
| int null_perf_irq(struct pt_regs *regs) |
| { |
| return 0; |
| } |
| |
| int (*perf_irq)(struct pt_regs *regs) = null_perf_irq; |
| |
| EXPORT_SYMBOL(null_perf_irq); |
| EXPORT_SYMBOL(perf_irq); |
| |
| asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) |
| { |
| int r2 = cpu_has_mips_r2; |
| |
| irq_enter(); |
| kstat_this_cpu.irqs[irq]++; |
| |
| /* |
| * Suckage alert: |
| * Before R2 of the architecture there was no way to see if a |
| * performance counter interrupt was pending, so we have to run the |
| * performance counter interrupt handler anyway. |
| */ |
| if (!r2 || (read_c0_cause() & (1 << 26))) |
| if (perf_irq(regs)) |
| goto out; |
| |
| /* we keep interrupt disabled all the time */ |
| if (!r2 || (read_c0_cause() & (1 << 30))) |
| timer_interrupt(irq, NULL, regs); |
| |
| out: |
| irq_exit(); |
| } |
| |
| asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) |
| { |
| irq_enter(); |
| if (smp_processor_id() != 0) |
| kstat_this_cpu.irqs[irq]++; |
| |
| /* we keep interrupt disabled all the time */ |
| local_timer_interrupt(irq, NULL, regs); |
| |
| irq_exit(); |
| } |
| |
| /* |
| * time_init() - it does the following things. |
| * |
| * 1) board_time_init() - |
| * a) (optional) set up RTC routines, |
| * b) (optional) calibrate and set the mips_hpt_frequency |
| * (only needed if you intended to use fixed_rate_gettimeoffset |
| * or use cpu counter as timer interrupt source) |
| * 2) setup xtime based on rtc_mips_get_time(). |
| * 3) choose a appropriate gettimeoffset routine. |
| * 4) calculate a couple of cached variables for later usage |
| * 5) plat_timer_setup() - |
| * a) (optional) over-write any choices made above by time_init(). |
| * b) machine specific code should setup the timer irqaction. |
| * c) enable the timer interrupt |
| */ |
| |
| void (*board_time_init)(void); |
| |
| unsigned int mips_hpt_frequency; |
| |
| static struct irqaction timer_irqaction = { |
| .handler = timer_interrupt, |
| .flags = IRQF_DISABLED, |
| .name = "timer", |
| }; |
| |
| static unsigned int __init calibrate_hpt(void) |
| { |
| u64 frequency; |
| u32 hpt_start, hpt_end, hpt_count, hz; |
| |
| const int loops = HZ / 10; |
| int log_2_loops = 0; |
| int i; |
| |
| /* |
| * We want to calibrate for 0.1s, but to avoid a 64-bit |
| * division we round the number of loops up to the nearest |
| * power of 2. |
| */ |
| while (loops > 1 << log_2_loops) |
| log_2_loops++; |
| i = 1 << log_2_loops; |
| |
| /* |
| * Wait for a rising edge of the timer interrupt. |
| */ |
| while (mips_timer_state()); |
| while (!mips_timer_state()); |
| |
| /* |
| * Now see how many high precision timer ticks happen |
| * during the calculated number of periods between timer |
| * interrupts. |
| */ |
| hpt_start = mips_hpt_read(); |
| do { |
| while (mips_timer_state()); |
| while (!mips_timer_state()); |
| } while (--i); |
| hpt_end = mips_hpt_read(); |
| |
| hpt_count = hpt_end - hpt_start; |
| hz = HZ; |
| frequency = (u64)hpt_count * (u64)hz; |
| |
| return frequency >> log_2_loops; |
| } |
| |
| void __init time_init(void) |
| { |
| if (board_time_init) |
| board_time_init(); |
| |
| if (!rtc_mips_set_mmss) |
| rtc_mips_set_mmss = rtc_mips_set_time; |
| |
| xtime.tv_sec = rtc_mips_get_time(); |
| xtime.tv_nsec = 0; |
| |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| /* Choose appropriate high precision timer routines. */ |
| if (!cpu_has_counter && !mips_hpt_read) { |
| /* No high precision timer -- sorry. */ |
| mips_hpt_read = null_hpt_read; |
| mips_hpt_init = null_hpt_init; |
| } else if (!mips_hpt_frequency && !mips_timer_state) { |
| /* A high precision timer of unknown frequency. */ |
| if (!mips_hpt_read) { |
| /* No external high precision timer -- use R4k. */ |
| mips_hpt_read = c0_hpt_read; |
| mips_hpt_init = c0_hpt_init; |
| } |
| |
| if (cpu_has_mips32r1 || cpu_has_mips32r2 || |
| (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || |
| (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) |
| /* |
| * We need to calibrate the counter but we don't have |
| * 64-bit division. |
| */ |
| do_gettimeoffset = calibrate_div32_gettimeoffset; |
| else |
| /* |
| * We need to calibrate the counter but we *do* have |
| * 64-bit division. |
| */ |
| do_gettimeoffset = calibrate_div64_gettimeoffset; |
| } else { |
| /* We know counter frequency. Or we can get it. */ |
| if (!mips_hpt_read) { |
| /* No external high precision timer -- use R4k. */ |
| mips_hpt_read = c0_hpt_read; |
| |
| if (mips_timer_state) |
| mips_hpt_init = c0_hpt_init; |
| else { |
| /* No external timer interrupt -- use R4k. */ |
| mips_hpt_init = c0_hpt_timer_init; |
| mips_timer_ack = c0_timer_ack; |
| } |
| } |
| if (!mips_hpt_frequency) |
| mips_hpt_frequency = calibrate_hpt(); |
| |
| do_gettimeoffset = fixed_rate_gettimeoffset; |
| |
| /* Calculate cache parameters. */ |
| cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; |
| |
| /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ |
| do_div64_32(sll32_usecs_per_cycle, |
| 1000000, mips_hpt_frequency / 2, |
| mips_hpt_frequency); |
| |
| /* Report the high precision timer rate for a reference. */ |
| printk("Using %u.%03u MHz high precision timer.\n", |
| ((mips_hpt_frequency + 500) / 1000) / 1000, |
| ((mips_hpt_frequency + 500) / 1000) % 1000); |
| } |
| |
| if (!mips_timer_ack) |
| /* No timer interrupt ack (e.g. i8254). */ |
| mips_timer_ack = null_timer_ack; |
| |
| /* This sets up the high precision timer for the first interrupt. */ |
| mips_hpt_init(mips_hpt_read()); |
| |
| /* |
| * Call board specific timer interrupt setup. |
| * |
| * this pointer must be setup in machine setup routine. |
| * |
| * Even if a machine chooses to use a low-level timer interrupt, |
| * it still needs to setup the timer_irqaction. |
| * In that case, it might be better to set timer_irqaction.handler |
| * to be NULL function so that we are sure the high-level code |
| * is not invoked accidentally. |
| */ |
| plat_timer_setup(&timer_irqaction); |
| } |
| |
| #define FEBRUARY 2 |
| #define STARTOFTIME 1970 |
| #define SECDAY 86400L |
| #define SECYR (SECDAY * 365) |
| #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) |
| #define days_in_year(y) (leapyear(y) ? 366 : 365) |
| #define days_in_month(m) (month_days[(m) - 1]) |
| |
| static int month_days[12] = { |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| void to_tm(unsigned long tim, struct rtc_time *tm) |
| { |
| long hms, day, gday; |
| int i; |
| |
| gday = day = tim / SECDAY; |
| hms = tim % SECDAY; |
| |
| /* Hours, minutes, seconds are easy */ |
| tm->tm_hour = hms / 3600; |
| tm->tm_min = (hms % 3600) / 60; |
| tm->tm_sec = (hms % 3600) % 60; |
| |
| /* Number of years in days */ |
| for (i = STARTOFTIME; day >= days_in_year(i); i++) |
| day -= days_in_year(i); |
| tm->tm_year = i; |
| |
| /* Number of months in days left */ |
| if (leapyear(tm->tm_year)) |
| days_in_month(FEBRUARY) = 29; |
| for (i = 1; day >= days_in_month(i); i++) |
| day -= days_in_month(i); |
| days_in_month(FEBRUARY) = 28; |
| tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ |
| |
| /* Days are what is left over (+1) from all that. */ |
| tm->tm_mday = day + 1; |
| |
| /* |
| * Determine the day of week |
| */ |
| tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ |
| } |
| |
| EXPORT_SYMBOL(rtc_lock); |
| EXPORT_SYMBOL(to_tm); |
| EXPORT_SYMBOL(rtc_mips_set_time); |
| EXPORT_SYMBOL(rtc_mips_get_time); |
| |
| unsigned long long sched_clock(void) |
| { |
| return (unsigned long long)jiffies*(1000000000/HZ); |
| } |