crypto: GnuPG based MPI lib - source files (part 1)

Adds the multi-precision-integer maths library which was originally taken
from GnuPG and ported to the kernel by (among others) David Howells.
This version is taken from Fedora kernel 2.6.32-71.14.1.el6.
The difference is that checkpatch reported errors and warnings have been fixed.

This library is used to implemenet RSA digital signature verification
used in IMA/EVM integrity protection subsystem.

Due to patch size limitation, the patch is divided into 4 parts.

Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
diff --git a/lib/mpi/mpih-div.c b/lib/mpi/mpih-div.c
new file mode 100644
index 0000000..87ede16
--- /dev/null
+++ b/lib/mpi/mpih-div.c
@@ -0,0 +1,541 @@
+/* mpihelp-div.c  -  MPI helper functions
+ *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
+ *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
+ *
+ * This file is part of GnuPG.
+ *
+ * GnuPG is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * GnuPG is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ *
+ * Note: This code is heavily based on the GNU MP Library.
+ *	 Actually it's the same code with only minor changes in the
+ *	 way the data is stored; this is to support the abstraction
+ *	 of an optional secure memory allocation which may be used
+ *	 to avoid revealing of sensitive data due to paging etc.
+ *	 The GNU MP Library itself is published under the LGPL;
+ *	 however I decided to publish this code under the plain GPL.
+ */
+
+#include "mpi-internal.h"
+#include "longlong.h"
+
+#ifndef UMUL_TIME
+#define UMUL_TIME 1
+#endif
+#ifndef UDIV_TIME
+#define UDIV_TIME UMUL_TIME
+#endif
+
+/* FIXME: We should be using invert_limb (or invert_normalized_limb)
+ * here (not udiv_qrnnd).
+ */
+
+mpi_limb_t
+mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
+	      mpi_limb_t divisor_limb)
+{
+	mpi_size_t i;
+	mpi_limb_t n1, n0, r;
+	int dummy;
+
+	/* Botch: Should this be handled at all?  Rely on callers?  */
+	if (!dividend_size)
+		return 0;
+
+	/* If multiplication is much faster than division, and the
+	 * dividend is large, pre-invert the divisor, and use
+	 * only multiplications in the inner loop.
+	 *
+	 * This test should be read:
+	 *   Does it ever help to use udiv_qrnnd_preinv?
+	 *     && Does what we save compensate for the inversion overhead?
+	 */
+	if (UDIV_TIME > (2 * UMUL_TIME + 6)
+	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
+		int normalization_steps;
+
+		count_leading_zeros(normalization_steps, divisor_limb);
+		if (normalization_steps) {
+			mpi_limb_t divisor_limb_inverted;
+
+			divisor_limb <<= normalization_steps;
+
+			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
+			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
+			 * most significant bit (with weight 2**N) implicit.
+			 *
+			 * Special case for DIVISOR_LIMB == 100...000.
+			 */
+			if (!(divisor_limb << 1))
+				divisor_limb_inverted = ~(mpi_limb_t) 0;
+			else
+				udiv_qrnnd(divisor_limb_inverted, dummy,
+					   -divisor_limb, 0, divisor_limb);
+
+			n1 = dividend_ptr[dividend_size - 1];
+			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
+
+			/* Possible optimization:
+			 * if (r == 0
+			 * && divisor_limb > ((n1 << normalization_steps)
+			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
+			 * ...one division less...
+			 */
+			for (i = dividend_size - 2; i >= 0; i--) {
+				n0 = dividend_ptr[i];
+				UDIV_QRNND_PREINV(dummy, r, r,
+						  ((n1 << normalization_steps)
+						   | (n0 >>
+						      (BITS_PER_MPI_LIMB -
+						       normalization_steps))),
+						  divisor_limb,
+						  divisor_limb_inverted);
+				n1 = n0;
+			}
+			UDIV_QRNND_PREINV(dummy, r, r,
+					  n1 << normalization_steps,
+					  divisor_limb, divisor_limb_inverted);
+			return r >> normalization_steps;
+		} else {
+			mpi_limb_t divisor_limb_inverted;
+
+			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
+			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
+			 * most significant bit (with weight 2**N) implicit.
+			 *
+			 * Special case for DIVISOR_LIMB == 100...000.
+			 */
+			if (!(divisor_limb << 1))
+				divisor_limb_inverted = ~(mpi_limb_t) 0;
+			else
+				udiv_qrnnd(divisor_limb_inverted, dummy,
+					   -divisor_limb, 0, divisor_limb);
+
+			i = dividend_size - 1;
+			r = dividend_ptr[i];
+
+			if (r >= divisor_limb)
+				r = 0;
+			else
+				i--;
+
+			for (; i >= 0; i--) {
+				n0 = dividend_ptr[i];
+				UDIV_QRNND_PREINV(dummy, r, r,
+						  n0, divisor_limb,
+						  divisor_limb_inverted);
+			}
+			return r;
+		}
+	} else {
+		if (UDIV_NEEDS_NORMALIZATION) {
+			int normalization_steps;
+
+			count_leading_zeros(normalization_steps, divisor_limb);
+			if (normalization_steps) {
+				divisor_limb <<= normalization_steps;
+
+				n1 = dividend_ptr[dividend_size - 1];
+				r = n1 >> (BITS_PER_MPI_LIMB -
+					   normalization_steps);
+
+				/* Possible optimization:
+				 * if (r == 0
+				 * && divisor_limb > ((n1 << normalization_steps)
+				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
+				 * ...one division less...
+				 */
+				for (i = dividend_size - 2; i >= 0; i--) {
+					n0 = dividend_ptr[i];
+					udiv_qrnnd(dummy, r, r,
+						   ((n1 << normalization_steps)
+						    | (n0 >>
+						       (BITS_PER_MPI_LIMB -
+							normalization_steps))),
+						   divisor_limb);
+					n1 = n0;
+				}
+				udiv_qrnnd(dummy, r, r,
+					   n1 << normalization_steps,
+					   divisor_limb);
+				return r >> normalization_steps;
+			}
+		}
+		/* No normalization needed, either because udiv_qrnnd doesn't require
+		 * it, or because DIVISOR_LIMB is already normalized.  */
+		i = dividend_size - 1;
+		r = dividend_ptr[i];
+
+		if (r >= divisor_limb)
+			r = 0;
+		else
+			i--;
+
+		for (; i >= 0; i--) {
+			n0 = dividend_ptr[i];
+			udiv_qrnnd(dummy, r, r, n0, divisor_limb);
+		}
+		return r;
+	}
+}
+
+/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
+ * the NSIZE-DSIZE least significant quotient limbs at QP
+ * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
+ * non-zero, generate that many fraction bits and append them after the
+ * other quotient limbs.
+ * Return the most significant limb of the quotient, this is always 0 or 1.
+ *
+ * Preconditions:
+ * 0. NSIZE >= DSIZE.
+ * 1. The most significant bit of the divisor must be set.
+ * 2. QP must either not overlap with the input operands at all, or
+ *    QP + DSIZE >= NP must hold true.	(This means that it's
+ *    possible to put the quotient in the high part of NUM, right after the
+ *    remainder in NUM.
+ * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
+ */
+
+mpi_limb_t
+mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
+	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
+{
+	mpi_limb_t most_significant_q_limb = 0;
+
+	switch (dsize) {
+	case 0:
+		/* We are asked to divide by zero, so go ahead and do it!  (To make
+		   the compiler not remove this statement, return the value.)  */
+		return 1 / dsize;
+
+	case 1:
+		{
+			mpi_size_t i;
+			mpi_limb_t n1;
+			mpi_limb_t d;
+
+			d = dp[0];
+			n1 = np[nsize - 1];
+
+			if (n1 >= d) {
+				n1 -= d;
+				most_significant_q_limb = 1;
+			}
+
+			qp += qextra_limbs;
+			for (i = nsize - 2; i >= 0; i--)
+				udiv_qrnnd(qp[i], n1, n1, np[i], d);
+			qp -= qextra_limbs;
+
+			for (i = qextra_limbs - 1; i >= 0; i--)
+				udiv_qrnnd(qp[i], n1, n1, 0, d);
+
+			np[0] = n1;
+		}
+		break;
+
+	case 2:
+		{
+			mpi_size_t i;
+			mpi_limb_t n1, n0, n2;
+			mpi_limb_t d1, d0;
+
+			np += nsize - 2;
+			d1 = dp[1];
+			d0 = dp[0];
+			n1 = np[1];
+			n0 = np[0];
+
+			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
+				sub_ddmmss(n1, n0, n1, n0, d1, d0);
+				most_significant_q_limb = 1;
+			}
+
+			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
+				mpi_limb_t q;
+				mpi_limb_t r;
+
+				if (i >= qextra_limbs)
+					np--;
+				else
+					np[0] = 0;
+
+				if (n1 == d1) {
+					/* Q should be either 111..111 or 111..110.  Need special
+					 * treatment of this rare case as normal division would
+					 * give overflow.  */
+					q = ~(mpi_limb_t) 0;
+
+					r = n0 + d1;
+					if (r < d1) {	/* Carry in the addition? */
+						add_ssaaaa(n1, n0, r - d0,
+							   np[0], 0, d0);
+						qp[i] = q;
+						continue;
+					}
+					n1 = d0 - (d0 != 0 ? 1 : 0);
+					n0 = -d0;
+				} else {
+					udiv_qrnnd(q, r, n1, n0, d1);
+					umul_ppmm(n1, n0, d0, q);
+				}
+
+				n2 = np[0];
+q_test:
+				if (n1 > r || (n1 == r && n0 > n2)) {
+					/* The estimated Q was too large.  */
+					q--;
+					sub_ddmmss(n1, n0, n1, n0, 0, d0);
+					r += d1;
+					if (r >= d1)	/* If not carry, test Q again.  */
+						goto q_test;
+				}
+
+				qp[i] = q;
+				sub_ddmmss(n1, n0, r, n2, n1, n0);
+			}
+			np[1] = n1;
+			np[0] = n0;
+		}
+		break;
+
+	default:
+		{
+			mpi_size_t i;
+			mpi_limb_t dX, d1, n0;
+
+			np += nsize - dsize;
+			dX = dp[dsize - 1];
+			d1 = dp[dsize - 2];
+			n0 = np[dsize - 1];
+
+			if (n0 >= dX) {
+				if (n0 > dX
+				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
+					mpihelp_sub_n(np, np, dp, dsize);
+					n0 = np[dsize - 1];
+					most_significant_q_limb = 1;
+				}
+			}
+
+			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
+				mpi_limb_t q;
+				mpi_limb_t n1, n2;
+				mpi_limb_t cy_limb;
+
+				if (i >= qextra_limbs) {
+					np--;
+					n2 = np[dsize];
+				} else {
+					n2 = np[dsize - 1];
+					MPN_COPY_DECR(np + 1, np, dsize - 1);
+					np[0] = 0;
+				}
+
+				if (n0 == dX) {
+					/* This might over-estimate q, but it's probably not worth
+					 * the extra code here to find out.  */
+					q = ~(mpi_limb_t) 0;
+				} else {
+					mpi_limb_t r;
+
+					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
+					umul_ppmm(n1, n0, d1, q);
+
+					while (n1 > r
+					       || (n1 == r
+						   && n0 > np[dsize - 2])) {
+						q--;
+						r += dX;
+						if (r < dX)	/* I.e. "carry in previous addition?" */
+							break;
+						n1 -= n0 < d1;
+						n0 -= d1;
+					}
+				}
+
+				/* Possible optimization: We already have (q * n0) and (1 * n1)
+				 * after the calculation of q.  Taking advantage of that, we
+				 * could make this loop make two iterations less.  */
+				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
+
+				if (n2 != cy_limb) {
+					mpihelp_add_n(np, np, dp, dsize);
+					q--;
+				}
+
+				qp[i] = q;
+				n0 = np[dsize - 1];
+			}
+		}
+	}
+
+	return most_significant_q_limb;
+}
+
+/****************
+ * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
+ * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
+ * Return the single-limb remainder.
+ * There are no constraints on the value of the divisor.
+ *
+ * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
+ */
+
+mpi_limb_t
+mpihelp_divmod_1(mpi_ptr_t quot_ptr,
+		 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
+		 mpi_limb_t divisor_limb)
+{
+	mpi_size_t i;
+	mpi_limb_t n1, n0, r;
+	int dummy;
+
+	if (!dividend_size)
+		return 0;
+
+	/* If multiplication is much faster than division, and the
+	 * dividend is large, pre-invert the divisor, and use
+	 * only multiplications in the inner loop.
+	 *
+	 * This test should be read:
+	 * Does it ever help to use udiv_qrnnd_preinv?
+	 * && Does what we save compensate for the inversion overhead?
+	 */
+	if (UDIV_TIME > (2 * UMUL_TIME + 6)
+	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
+		int normalization_steps;
+
+		count_leading_zeros(normalization_steps, divisor_limb);
+		if (normalization_steps) {
+			mpi_limb_t divisor_limb_inverted;
+
+			divisor_limb <<= normalization_steps;
+
+			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
+			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
+			 * most significant bit (with weight 2**N) implicit.
+			 */
+			/* Special case for DIVISOR_LIMB == 100...000.  */
+			if (!(divisor_limb << 1))
+				divisor_limb_inverted = ~(mpi_limb_t) 0;
+			else
+				udiv_qrnnd(divisor_limb_inverted, dummy,
+					   -divisor_limb, 0, divisor_limb);
+
+			n1 = dividend_ptr[dividend_size - 1];
+			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
+
+			/* Possible optimization:
+			 * if (r == 0
+			 * && divisor_limb > ((n1 << normalization_steps)
+			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
+			 * ...one division less...
+			 */
+			for (i = dividend_size - 2; i >= 0; i--) {
+				n0 = dividend_ptr[i];
+				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
+						  ((n1 << normalization_steps)
+						   | (n0 >>
+						      (BITS_PER_MPI_LIMB -
+						       normalization_steps))),
+						  divisor_limb,
+						  divisor_limb_inverted);
+				n1 = n0;
+			}
+			UDIV_QRNND_PREINV(quot_ptr[0], r, r,
+					  n1 << normalization_steps,
+					  divisor_limb, divisor_limb_inverted);
+			return r >> normalization_steps;
+		} else {
+			mpi_limb_t divisor_limb_inverted;
+
+			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
+			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
+			 * most significant bit (with weight 2**N) implicit.
+			 */
+			/* Special case for DIVISOR_LIMB == 100...000.  */
+			if (!(divisor_limb << 1))
+				divisor_limb_inverted = ~(mpi_limb_t) 0;
+			else
+				udiv_qrnnd(divisor_limb_inverted, dummy,
+					   -divisor_limb, 0, divisor_limb);
+
+			i = dividend_size - 1;
+			r = dividend_ptr[i];
+
+			if (r >= divisor_limb)
+				r = 0;
+			else
+				quot_ptr[i--] = 0;
+
+			for (; i >= 0; i--) {
+				n0 = dividend_ptr[i];
+				UDIV_QRNND_PREINV(quot_ptr[i], r, r,
+						  n0, divisor_limb,
+						  divisor_limb_inverted);
+			}
+			return r;
+		}
+	} else {
+		if (UDIV_NEEDS_NORMALIZATION) {
+			int normalization_steps;
+
+			count_leading_zeros(normalization_steps, divisor_limb);
+			if (normalization_steps) {
+				divisor_limb <<= normalization_steps;
+
+				n1 = dividend_ptr[dividend_size - 1];
+				r = n1 >> (BITS_PER_MPI_LIMB -
+					   normalization_steps);
+
+				/* Possible optimization:
+				 * if (r == 0
+				 * && divisor_limb > ((n1 << normalization_steps)
+				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
+				 * ...one division less...
+				 */
+				for (i = dividend_size - 2; i >= 0; i--) {
+					n0 = dividend_ptr[i];
+					udiv_qrnnd(quot_ptr[i + 1], r, r,
+						   ((n1 << normalization_steps)
+						    | (n0 >>
+						       (BITS_PER_MPI_LIMB -
+							normalization_steps))),
+						   divisor_limb);
+					n1 = n0;
+				}
+				udiv_qrnnd(quot_ptr[0], r, r,
+					   n1 << normalization_steps,
+					   divisor_limb);
+				return r >> normalization_steps;
+			}
+		}
+		/* No normalization needed, either because udiv_qrnnd doesn't require
+		 * it, or because DIVISOR_LIMB is already normalized.  */
+		i = dividend_size - 1;
+		r = dividend_ptr[i];
+
+		if (r >= divisor_limb)
+			r = 0;
+		else
+			quot_ptr[i--] = 0;
+
+		for (; i >= 0; i--) {
+			n0 = dividend_ptr[i];
+			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
+		}
+		return r;
+	}
+}