| /* |
| * linux/kernel/panic.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| */ |
| |
| /* |
| * This function is used through-out the kernel (including mm and fs) |
| * to indicate a major problem. |
| */ |
| #include <linux/debug_locks.h> |
| #include <linux/sched/debug.h> |
| #include <linux/interrupt.h> |
| #include <linux/kmsg_dump.h> |
| #include <linux/kallsyms.h> |
| #include <linux/notifier.h> |
| #include <linux/vt_kern.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/ftrace.h> |
| #include <linux/reboot.h> |
| #include <linux/delay.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/sysrq.h> |
| #include <linux/init.h> |
| #include <linux/nmi.h> |
| #include <linux/console.h> |
| #include <linux/bug.h> |
| #include <linux/ratelimit.h> |
| #include <soc/oppo/oppo_project.h> |
| #include <linux/sysfs.h> |
| |
| #define PANIC_TIMER_STEP 100 |
| #define PANIC_BLINK_SPD 18 |
| |
| #ifdef OPLUS_FEATURE_PHOENIX |
| // Kun.Hu@TECH.BSP.Stability.PHOENIX_PROJECT 2019/06/11, Add for phoenix project |
| #include "../drivers/soc/oplus/system/oppo_phoenix/oppo_phoenix.h" |
| #include <linux/timer.h> |
| #include <linux/timex.h> |
| #include <linux/rtc.h> |
| //Liang.Zhang@PSW.TECH.BOOTUP, 2019/01/22, Add for monitor kernel error |
| int kernel_panic_happened = 0; |
| int hwt_happened = 0; |
| #endif |
| |
| #ifdef OPLUS_FEATURE_PERFORMANCE |
| //ZuoTong@ANDROID.PERFORMANCE, 2020/06/28,Add for flushing device cache before goto dump mode! |
| bool is_triggering_panic = false; |
| bool is_triggering_hwt = false; |
| #endif /*OPLUS_FEATURE_PERFORMANCE*/ |
| |
| int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; |
| static unsigned long tainted_mask; |
| static int pause_on_oops; |
| static int pause_on_oops_flag; |
| static DEFINE_SPINLOCK(pause_on_oops_lock); |
| bool crash_kexec_post_notifiers; |
| int panic_on_warn __read_mostly; |
| static unsigned int warn_limit __read_mostly; |
| |
| int panic_timeout = CONFIG_PANIC_TIMEOUT; |
| EXPORT_SYMBOL_GPL(panic_timeout); |
| |
| ATOMIC_NOTIFIER_HEAD(panic_notifier_list); |
| |
| EXPORT_SYMBOL(panic_notifier_list); |
| |
| #ifdef CONFIG_SYSCTL |
| static struct ctl_table kern_panic_table[] = { |
| { |
| .procname = "warn_limit", |
| .data = &warn_limit, |
| .maxlen = sizeof(warn_limit), |
| .mode = 0644, |
| .proc_handler = proc_douintvec, |
| }, |
| { } |
| }; |
| |
| static __init int kernel_panic_sysctls_init(void) |
| { |
| register_sysctl_init("kernel", kern_panic_table); |
| return 0; |
| } |
| late_initcall(kernel_panic_sysctls_init); |
| #endif |
| |
| static atomic_t warn_count = ATOMIC_INIT(0); |
| |
| #ifdef CONFIG_SYSFS |
| static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr, |
| char *page) |
| { |
| return sysfs_emit(page, "%d\n", atomic_read(&warn_count)); |
| } |
| |
| static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count); |
| |
| static __init int kernel_panic_sysfs_init(void) |
| { |
| sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL); |
| return 0; |
| } |
| late_initcall(kernel_panic_sysfs_init); |
| #endif |
| |
| static long no_blink(int state) |
| { |
| return 0; |
| } |
| |
| /* Returns how long it waited in ms */ |
| long (*panic_blink)(int state); |
| EXPORT_SYMBOL(panic_blink); |
| |
| /* |
| * Stop ourself in panic -- architecture code may override this |
| */ |
| void __weak panic_smp_self_stop(void) |
| { |
| while (1) |
| cpu_relax(); |
| } |
| |
| /* |
| * Stop ourselves in NMI context if another CPU has already panicked. Arch code |
| * may override this to prepare for crash dumping, e.g. save regs info. |
| */ |
| void __weak nmi_panic_self_stop(struct pt_regs *regs) |
| { |
| panic_smp_self_stop(); |
| } |
| |
| #ifdef OPLUS_FEATURE_PHOENIX |
| //Liang.Zhang@PSW.TECH.BOOTUP, 2018/11/12, Add for monitor kernel panic |
| void deal_fatal_err(void) |
| { |
| if(!phx_is_phoenix_boot_completed()) { |
| |
| if(kernel_panic_happened) { |
| phx_set_boot_error(ERROR_KERNEL_PANIC); |
| } else if(hwt_happened) { |
| phx_set_boot_error(ERROR_HWT); |
| } |
| |
| } else { |
| struct timespec ts; |
| struct rtc_time tm; |
| char err_info[60] = {0}; |
| |
| getnstimeofday(&ts); |
| rtc_time_to_tm(ts.tv_sec, &tm); |
| |
| sprintf(err_info, "panic after bootup @%d-%d-%d %d:%d:%d", |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); |
| pr_err("panic after bootup @%d-%d-%d %d:%d:%d\n", |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); |
| } |
| } |
| #endif /*OPLUS_FEATURE_PHOENIX*/ |
| |
| /* |
| * Stop other CPUs in panic. Architecture dependent code may override this |
| * with more suitable version. For example, if the architecture supports |
| * crash dump, it should save registers of each stopped CPU and disable |
| * per-CPU features such as virtualization extensions. |
| */ |
| void __weak crash_smp_send_stop(void) |
| { |
| static int cpus_stopped; |
| |
| /* |
| * This function can be called twice in panic path, but obviously |
| * we execute this only once. |
| */ |
| if (cpus_stopped) |
| return; |
| |
| /* |
| * Note smp_send_stop is the usual smp shutdown function, which |
| * unfortunately means it may not be hardened to work in a panic |
| * situation. |
| */ |
| smp_send_stop(); |
| cpus_stopped = 1; |
| } |
| |
| atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); |
| |
| /* |
| * A variant of panic() called from NMI context. We return if we've already |
| * panicked on this CPU. If another CPU already panicked, loop in |
| * nmi_panic_self_stop() which can provide architecture dependent code such |
| * as saving register state for crash dump. |
| */ |
| void nmi_panic(struct pt_regs *regs, const char *msg) |
| { |
| int old_cpu, cpu; |
| |
| cpu = raw_smp_processor_id(); |
| old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); |
| |
| if (old_cpu == PANIC_CPU_INVALID) |
| panic("%s", msg); |
| else if (old_cpu != cpu) |
| nmi_panic_self_stop(regs); |
| } |
| EXPORT_SYMBOL(nmi_panic); |
| |
| #ifdef OPLUS_FEATURE_PERFORMANCE |
| //ZuoTong@ANDROID.PERFORMANCE, 2020/06/28,Add for flushing device cache before goto dump mode! |
| extern int panic_flush_device_cache(int timeout); |
| void flush_cache_on_panic(void){ |
| if (get_eng_version() == 1){ |
| pr_err("In full dump mode!\n"); |
| }else{ |
| pr_err("In mini dump mode and start flushing the devices cache!"); |
| panic_flush_device_cache(2000); |
| } |
| } |
| #endif /*OPLUS_FEATURE_PERFORMANCE*/ |
| |
| void check_panic_on_warn(const char *origin) |
| { |
| unsigned int limit; |
| |
| if (panic_on_warn) |
| panic("%s: panic_on_warn set ...\n", origin); |
| |
| limit = READ_ONCE(warn_limit); |
| if (atomic_inc_return(&warn_count) >= limit && limit) |
| panic("%s: system warned too often (kernel.warn_limit is %d)", |
| origin, limit); |
| } |
| |
| /** |
| * panic - halt the system |
| * @fmt: The text string to print |
| * |
| * Display a message, then perform cleanups. |
| * |
| * This function never returns. |
| */ |
| void panic(const char *fmt, ...) |
| { |
| static char buf[1024]; |
| va_list args; |
| long i, i_next = 0; |
| int state = 0; |
| int old_cpu, this_cpu; |
| bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; |
| |
| if (panic_on_warn) { |
| /* |
| * This thread may hit another WARN() in the panic path. |
| * Resetting this prevents additional WARN() from panicking the |
| * system on this thread. Other threads are blocked by the |
| * panic_mutex in panic(). |
| */ |
| panic_on_warn = 0; |
| } |
| |
| /* |
| * Disable local interrupts. This will prevent panic_smp_self_stop |
| * from deadlocking the first cpu that invokes the panic, since |
| * there is nothing to prevent an interrupt handler (that runs |
| * after setting panic_cpu) from invoking panic() again. |
| */ |
| local_irq_disable(); |
| preempt_disable_notrace(); |
| |
| /* |
| * It's possible to come here directly from a panic-assertion and |
| * not have preempt disabled. Some functions called from here want |
| * preempt to be disabled. No point enabling it later though... |
| * |
| * Only one CPU is allowed to execute the panic code from here. For |
| * multiple parallel invocations of panic, all other CPUs either |
| * stop themself or will wait until they are stopped by the 1st CPU |
| * with smp_send_stop(). |
| * |
| * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which |
| * comes here, so go ahead. |
| * `old_cpu == this_cpu' means we came from nmi_panic() which sets |
| * panic_cpu to this CPU. In this case, this is also the 1st CPU. |
| */ |
| this_cpu = raw_smp_processor_id(); |
| old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); |
| |
| if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) |
| panic_smp_self_stop(); |
| |
| console_verbose(); |
| bust_spinlocks(1); |
| va_start(args, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, args); |
| va_end(args); |
| pr_emerg("Kernel panic - not syncing: %s\n", buf); |
| #ifdef CONFIG_DEBUG_BUGVERBOSE |
| /* |
| * Avoid nested stack-dumping if a panic occurs during oops processing |
| */ |
| if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) |
| dump_stack(); |
| #endif |
| |
| /* |
| * If we have crashed and we have a crash kernel loaded let it handle |
| * everything else. |
| * If we want to run this after calling panic_notifiers, pass |
| * the "crash_kexec_post_notifiers" option to the kernel. |
| * |
| * Bypass the panic_cpu check and call __crash_kexec directly. |
| */ |
| if (!_crash_kexec_post_notifiers) { |
| printk_safe_flush_on_panic(); |
| __crash_kexec(NULL); |
| |
| /* |
| * Note smp_send_stop is the usual smp shutdown function, which |
| * unfortunately means it may not be hardened to work in a |
| * panic situation. |
| */ |
| smp_send_stop(); |
| } else { |
| /* |
| * If we want to do crash dump after notifier calls and |
| * kmsg_dump, we will need architecture dependent extra |
| * works in addition to stopping other CPUs. |
| */ |
| crash_smp_send_stop(); |
| } |
| |
| /* |
| * Run any panic handlers, including those that might need to |
| * add information to the kmsg dump output. |
| */ |
| atomic_notifier_call_chain(&panic_notifier_list, 0, buf); |
| |
| /* Call flush even twice. It tries harder with a single online CPU */ |
| printk_safe_flush_on_panic(); |
| kmsg_dump(KMSG_DUMP_PANIC); |
| |
| /* |
| * If you doubt kdump always works fine in any situation, |
| * "crash_kexec_post_notifiers" offers you a chance to run |
| * panic_notifiers and dumping kmsg before kdump. |
| * Note: since some panic_notifiers can make crashed kernel |
| * more unstable, it can increase risks of the kdump failure too. |
| * |
| * Bypass the panic_cpu check and call __crash_kexec directly. |
| */ |
| if (_crash_kexec_post_notifiers) |
| __crash_kexec(NULL); |
| |
| #ifdef CONFIG_VT |
| unblank_screen(); |
| #endif |
| console_unblank(); |
| |
| /* |
| * We may have ended up stopping the CPU holding the lock (in |
| * smp_send_stop()) while still having some valuable data in the console |
| * buffer. Try to acquire the lock then release it regardless of the |
| * result. The release will also print the buffers out. Locks debug |
| * should be disabled to avoid reporting bad unlock balance when |
| * panic() is not being callled from OOPS. |
| */ |
| debug_locks_off(); |
| console_flush_on_panic(); |
| |
| if (!panic_blink) |
| panic_blink = no_blink; |
| |
| if (panic_timeout > 0) { |
| /* |
| * Delay timeout seconds before rebooting the machine. |
| * We can't use the "normal" timers since we just panicked. |
| */ |
| pr_emerg("Rebooting in %d seconds..\n", panic_timeout); |
| |
| for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { |
| touch_nmi_watchdog(); |
| if (i >= i_next) { |
| i += panic_blink(state ^= 1); |
| i_next = i + 3600 / PANIC_BLINK_SPD; |
| } |
| mdelay(PANIC_TIMER_STEP); |
| } |
| } |
| if (panic_timeout != 0) { |
| /* |
| * This will not be a clean reboot, with everything |
| * shutting down. But if there is a chance of |
| * rebooting the system it will be rebooted. |
| */ |
| emergency_restart(); |
| } |
| #ifdef __sparc__ |
| { |
| extern int stop_a_enabled; |
| /* Make sure the user can actually press Stop-A (L1-A) */ |
| stop_a_enabled = 1; |
| pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" |
| "twice on console to return to the boot prom\n"); |
| } |
| #endif |
| #if defined(CONFIG_S390) |
| { |
| unsigned long caller; |
| |
| caller = (unsigned long)__builtin_return_address(0); |
| disabled_wait(caller); |
| } |
| #endif |
| pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf); |
| local_irq_enable(); |
| for (i = 0; ; i += PANIC_TIMER_STEP) { |
| touch_softlockup_watchdog(); |
| if (i >= i_next) { |
| i += panic_blink(state ^= 1); |
| i_next = i + 3600 / PANIC_BLINK_SPD; |
| } |
| mdelay(PANIC_TIMER_STEP); |
| } |
| } |
| |
| EXPORT_SYMBOL(panic); |
| |
| /* |
| * TAINT_FORCED_RMMOD could be a per-module flag but the module |
| * is being removed anyway. |
| */ |
| const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { |
| { 'P', 'G', true }, /* TAINT_PROPRIETARY_MODULE */ |
| { 'F', ' ', true }, /* TAINT_FORCED_MODULE */ |
| { 'S', ' ', false }, /* TAINT_CPU_OUT_OF_SPEC */ |
| { 'R', ' ', false }, /* TAINT_FORCED_RMMOD */ |
| { 'M', ' ', false }, /* TAINT_MACHINE_CHECK */ |
| { 'B', ' ', false }, /* TAINT_BAD_PAGE */ |
| { 'U', ' ', false }, /* TAINT_USER */ |
| { 'D', ' ', false }, /* TAINT_DIE */ |
| { 'A', ' ', false }, /* TAINT_OVERRIDDEN_ACPI_TABLE */ |
| { 'W', ' ', false }, /* TAINT_WARN */ |
| { 'C', ' ', true }, /* TAINT_CRAP */ |
| { 'I', ' ', false }, /* TAINT_FIRMWARE_WORKAROUND */ |
| { 'O', ' ', true }, /* TAINT_OOT_MODULE */ |
| { 'E', ' ', true }, /* TAINT_UNSIGNED_MODULE */ |
| { 'L', ' ', false }, /* TAINT_SOFTLOCKUP */ |
| { 'K', ' ', true }, /* TAINT_LIVEPATCH */ |
| }; |
| |
| /** |
| * print_tainted - return a string to represent the kernel taint state. |
| * |
| * 'P' - Proprietary module has been loaded. |
| * 'F' - Module has been forcibly loaded. |
| * 'S' - SMP with CPUs not designed for SMP. |
| * 'R' - User forced a module unload. |
| * 'M' - System experienced a machine check exception. |
| * 'B' - System has hit bad_page. |
| * 'U' - Userspace-defined naughtiness. |
| * 'D' - Kernel has oopsed before |
| * 'A' - ACPI table overridden. |
| * 'W' - Taint on warning. |
| * 'C' - modules from drivers/staging are loaded. |
| * 'I' - Working around severe firmware bug. |
| * 'O' - Out-of-tree module has been loaded. |
| * 'E' - Unsigned module has been loaded. |
| * 'L' - A soft lockup has previously occurred. |
| * 'K' - Kernel has been live patched. |
| * |
| * The string is overwritten by the next call to print_tainted(). |
| */ |
| const char *print_tainted(void) |
| { |
| static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; |
| |
| if (tainted_mask) { |
| char *s; |
| int i; |
| |
| s = buf + sprintf(buf, "Tainted: "); |
| for (i = 0; i < TAINT_FLAGS_COUNT; i++) { |
| const struct taint_flag *t = &taint_flags[i]; |
| *s++ = test_bit(i, &tainted_mask) ? |
| t->c_true : t->c_false; |
| } |
| *s = 0; |
| } else |
| snprintf(buf, sizeof(buf), "Not tainted"); |
| |
| return buf; |
| } |
| |
| int test_taint(unsigned flag) |
| { |
| return test_bit(flag, &tainted_mask); |
| } |
| EXPORT_SYMBOL(test_taint); |
| |
| unsigned long get_taint(void) |
| { |
| return tainted_mask; |
| } |
| |
| /** |
| * add_taint: add a taint flag if not already set. |
| * @flag: one of the TAINT_* constants. |
| * @lockdep_ok: whether lock debugging is still OK. |
| * |
| * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for |
| * some notewortht-but-not-corrupting cases, it can be set to true. |
| */ |
| void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) |
| { |
| if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) |
| pr_warn("Disabling lock debugging due to kernel taint\n"); |
| |
| set_bit(flag, &tainted_mask); |
| } |
| EXPORT_SYMBOL(add_taint); |
| |
| static void spin_msec(int msecs) |
| { |
| int i; |
| |
| for (i = 0; i < msecs; i++) { |
| touch_nmi_watchdog(); |
| mdelay(1); |
| } |
| } |
| |
| /* |
| * It just happens that oops_enter() and oops_exit() are identically |
| * implemented... |
| */ |
| static void do_oops_enter_exit(void) |
| { |
| unsigned long flags; |
| static int spin_counter; |
| |
| if (!pause_on_oops) |
| return; |
| |
| spin_lock_irqsave(&pause_on_oops_lock, flags); |
| if (pause_on_oops_flag == 0) { |
| /* This CPU may now print the oops message */ |
| pause_on_oops_flag = 1; |
| } else { |
| /* We need to stall this CPU */ |
| if (!spin_counter) { |
| /* This CPU gets to do the counting */ |
| spin_counter = pause_on_oops; |
| do { |
| spin_unlock(&pause_on_oops_lock); |
| spin_msec(MSEC_PER_SEC); |
| spin_lock(&pause_on_oops_lock); |
| } while (--spin_counter); |
| pause_on_oops_flag = 0; |
| } else { |
| /* This CPU waits for a different one */ |
| while (spin_counter) { |
| spin_unlock(&pause_on_oops_lock); |
| spin_msec(1); |
| spin_lock(&pause_on_oops_lock); |
| } |
| } |
| } |
| spin_unlock_irqrestore(&pause_on_oops_lock, flags); |
| } |
| |
| /* |
| * Return true if the calling CPU is allowed to print oops-related info. |
| * This is a bit racy.. |
| */ |
| int oops_may_print(void) |
| { |
| return pause_on_oops_flag == 0; |
| } |
| |
| /* |
| * Called when the architecture enters its oops handler, before it prints |
| * anything. If this is the first CPU to oops, and it's oopsing the first |
| * time then let it proceed. |
| * |
| * This is all enabled by the pause_on_oops kernel boot option. We do all |
| * this to ensure that oopses don't scroll off the screen. It has the |
| * side-effect of preventing later-oopsing CPUs from mucking up the display, |
| * too. |
| * |
| * It turns out that the CPU which is allowed to print ends up pausing for |
| * the right duration, whereas all the other CPUs pause for twice as long: |
| * once in oops_enter(), once in oops_exit(). |
| */ |
| void oops_enter(void) |
| { |
| tracing_off(); |
| /* can't trust the integrity of the kernel anymore: */ |
| debug_locks_off(); |
| do_oops_enter_exit(); |
| } |
| |
| /* |
| * 64-bit random ID for oopses: |
| */ |
| static u64 oops_id; |
| |
| static int init_oops_id(void) |
| { |
| if (!oops_id) |
| get_random_bytes(&oops_id, sizeof(oops_id)); |
| else |
| oops_id++; |
| |
| return 0; |
| } |
| late_initcall(init_oops_id); |
| |
| void print_oops_end_marker(void) |
| { |
| init_oops_id(); |
| pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); |
| } |
| |
| /* |
| * Called when the architecture exits its oops handler, after printing |
| * everything. |
| */ |
| void oops_exit(void) |
| { |
| do_oops_enter_exit(); |
| print_oops_end_marker(); |
| kmsg_dump(KMSG_DUMP_OOPS); |
| } |
| |
| struct warn_args { |
| const char *fmt; |
| va_list args; |
| }; |
| |
| void __warn(const char *file, int line, void *caller, unsigned taint, |
| struct pt_regs *regs, struct warn_args *args) |
| { |
| disable_trace_on_warning(); |
| |
| pr_warn("------------[ cut here ]------------\n"); |
| |
| if (file) |
| pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", |
| raw_smp_processor_id(), current->pid, file, line, |
| caller); |
| else |
| pr_warn("WARNING: CPU: %d PID: %d at %pS\n", |
| raw_smp_processor_id(), current->pid, caller); |
| |
| if (args) |
| vprintk(args->fmt, args->args); |
| |
| check_panic_on_warn("kernel"); |
| |
| print_modules(); |
| |
| if (regs) |
| show_regs(regs); |
| else |
| dump_stack(); |
| |
| print_oops_end_marker(); |
| |
| /* Just a warning, don't kill lockdep. */ |
| add_taint(taint, LOCKDEP_STILL_OK); |
| } |
| |
| #ifdef WANT_WARN_ON_SLOWPATH |
| void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) |
| { |
| struct warn_args args; |
| |
| args.fmt = fmt; |
| va_start(args.args, fmt); |
| __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, |
| &args); |
| va_end(args.args); |
| } |
| EXPORT_SYMBOL(warn_slowpath_fmt); |
| |
| void warn_slowpath_fmt_taint(const char *file, int line, |
| unsigned taint, const char *fmt, ...) |
| { |
| struct warn_args args; |
| |
| args.fmt = fmt; |
| va_start(args.args, fmt); |
| __warn(file, line, __builtin_return_address(0), taint, NULL, &args); |
| va_end(args.args); |
| } |
| EXPORT_SYMBOL(warn_slowpath_fmt_taint); |
| |
| void warn_slowpath_null(const char *file, int line) |
| { |
| __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); |
| } |
| EXPORT_SYMBOL(warn_slowpath_null); |
| #endif |
| |
| #ifdef CONFIG_CC_STACKPROTECTOR |
| |
| /* |
| * Called when gcc's -fstack-protector feature is used, and |
| * gcc detects corruption of the on-stack canary value |
| */ |
| __visible void __stack_chk_fail(void) |
| { |
| panic("stack-protector: Kernel stack is corrupted in: %p\n", |
| __builtin_return_address(0)); |
| } |
| EXPORT_SYMBOL(__stack_chk_fail); |
| |
| #endif |
| |
| #ifdef CONFIG_ARCH_HAS_REFCOUNT |
| void refcount_error_report(struct pt_regs *regs, const char *err) |
| { |
| WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", |
| err, (void *)instruction_pointer(regs), |
| current->comm, task_pid_nr(current), |
| from_kuid_munged(&init_user_ns, current_uid()), |
| from_kuid_munged(&init_user_ns, current_euid())); |
| } |
| #endif |
| |
| core_param(panic, panic_timeout, int, 0644); |
| core_param(pause_on_oops, pause_on_oops, int, 0644); |
| core_param(panic_on_warn, panic_on_warn, int, 0644); |
| core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); |
| |
| static int __init oops_setup(char *s) |
| { |
| if (!s) |
| return -EINVAL; |
| if (!strcmp(s, "panic")) |
| panic_on_oops = 1; |
| return 0; |
| } |
| early_param("oops", oops_setup); |