| /* |
| ** I/O Sapic Driver - PCI interrupt line support |
| ** |
| ** (c) Copyright 1999 Grant Grundler |
| ** (c) Copyright 1999 Hewlett-Packard Company |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** The I/O sapic driver manages the Interrupt Redirection Table which is |
| ** the control logic to convert PCI line based interrupts into a Message |
| ** Signaled Interrupt (aka Transaction Based Interrupt, TBI). |
| ** |
| ** Acronyms |
| ** -------- |
| ** HPA Hard Physical Address (aka MMIO address) |
| ** IRQ Interrupt ReQuest. Implies Line based interrupt. |
| ** IRT Interrupt Routing Table (provided by PAT firmware) |
| ** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA |
| ** table which is implemented in I/O SAPIC. |
| ** ISR Interrupt Service Routine. aka Interrupt handler. |
| ** MSI Message Signaled Interrupt. PCI 2.2 functionality. |
| ** aka Transaction Based Interrupt (or TBI). |
| ** PA Precision Architecture. HP's RISC architecture. |
| ** RISC Reduced Instruction Set Computer. |
| ** |
| ** |
| ** What's a Message Signalled Interrupt? |
| ** ------------------------------------- |
| ** MSI is a write transaction which targets a processor and is similar |
| ** to a processor write to memory or MMIO. MSIs can be generated by I/O |
| ** devices as well as processors and require *architecture* to work. |
| ** |
| ** PA only supports MSI. So I/O subsystems must either natively generate |
| ** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs |
| ** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which |
| ** acts on behalf of a processor. |
| ** |
| ** MSI allows any I/O device to interrupt any processor. This makes |
| ** load balancing of the interrupt processing possible on an SMP platform. |
| ** Interrupts are also ordered WRT to DMA data. It's possible on I/O |
| ** coherent systems to completely eliminate PIO reads from the interrupt |
| ** path. The device and driver must be designed and implemented to |
| ** guarantee all DMA has been issued (issues about atomicity here) |
| ** before the MSI is issued. I/O status can then safely be read from |
| ** DMA'd data by the ISR. |
| ** |
| ** |
| ** PA Firmware |
| ** ----------- |
| ** PA-RISC platforms have two fundamentally different types of firmware. |
| ** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register |
| ** and BARs similar to a traditional PC BIOS. |
| ** The newer "PAT" firmware supports PDC calls which return tables. |
| ** PAT firmware only initializes the PCI Console and Boot interface. |
| ** With these tables, the OS can program all other PCI devices. |
| ** |
| ** One such PAT PDC call returns the "Interrupt Routing Table" (IRT). |
| ** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC |
| ** input line. If the IRT is not available, this driver assumes |
| ** INTERRUPT_LINE register has been programmed by firmware. The latter |
| ** case also means online addition of PCI cards can NOT be supported |
| ** even if HW support is present. |
| ** |
| ** All platforms with PAT firmware to date (Oct 1999) use one Interrupt |
| ** Routing Table for the entire platform. |
| ** |
| ** Where's the iosapic? |
| ** -------------------- |
| ** I/O sapic is part of the "Core Electronics Complex". And on HP platforms |
| ** it's integrated as part of the PCI bus adapter, "lba". So no bus walk |
| ** will discover I/O Sapic. I/O Sapic driver learns about each device |
| ** when lba driver advertises the presence of the I/O sapic by calling |
| ** iosapic_register(). |
| ** |
| ** |
| ** IRQ handling notes |
| ** ------------------ |
| ** The IO-SAPIC can indicate to the CPU which interrupt was asserted. |
| ** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per |
| ** IO-SAPIC interrupt and call the device driver's handler directly. |
| ** The IO-SAPIC driver hijacks the CPU interrupt handler so it can |
| ** issue the End Of Interrupt command to the IO-SAPIC. |
| ** |
| ** Overview of exported iosapic functions |
| ** -------------------------------------- |
| ** (caveat: code isn't finished yet - this is just the plan) |
| ** |
| ** iosapic_init: |
| ** o initialize globals (lock, etc) |
| ** o try to read IRT. Presence of IRT determines if this is |
| ** a PAT platform or not. |
| ** |
| ** iosapic_register(): |
| ** o create iosapic_info instance data structure |
| ** o allocate vector_info array for this iosapic |
| ** o initialize vector_info - read corresponding IRdT? |
| ** |
| ** iosapic_xlate_pin: (only called by fixup_irq for PAT platform) |
| ** o intr_pin = read cfg (INTERRUPT_PIN); |
| ** o if (device under PCI-PCI bridge) |
| ** translate slot/pin |
| ** |
| ** iosapic_fixup_irq: |
| ** o if PAT platform (IRT present) |
| ** intr_pin = iosapic_xlate_pin(isi,pcidev): |
| ** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin) |
| ** save IRT entry into vector_info later |
| ** write cfg INTERRUPT_LINE (with intr_line)? |
| ** else |
| ** intr_line = pcidev->irq |
| ** IRT pointer = NULL |
| ** endif |
| ** o locate vector_info (needs: isi, intr_line) |
| ** o allocate processor "irq" and get txn_addr/data |
| ** o request_irq(processor_irq, iosapic_interrupt, vector_info,...) |
| ** |
| ** iosapic_enable_irq: |
| ** o clear any pending IRQ on that line |
| ** o enable IRdT - call enable_irq(vector[line]->processor_irq) |
| ** o write EOI in case line is already asserted. |
| ** |
| ** iosapic_disable_irq: |
| ** o disable IRdT - call disable_irq(vector[line]->processor_irq) |
| */ |
| |
| |
| /* FIXME: determine which include files are really needed */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/byteorder.h> /* get in-line asm for swab */ |
| #include <asm/pdc.h> |
| #include <asm/pdcpat.h> |
| #include <asm/page.h> |
| #include <asm/io.h> /* read/write functions */ |
| #ifdef CONFIG_SUPERIO |
| #include <asm/superio.h> |
| #endif |
| |
| #include <asm/ropes.h> |
| #include "iosapic_private.h" |
| |
| #define MODULE_NAME "iosapic" |
| |
| /* "local" compile flags */ |
| #undef PCI_BRIDGE_FUNCS |
| #undef DEBUG_IOSAPIC |
| #undef DEBUG_IOSAPIC_IRT |
| |
| |
| #ifdef DEBUG_IOSAPIC |
| #define DBG(x...) printk(x) |
| #else /* DEBUG_IOSAPIC */ |
| #define DBG(x...) |
| #endif /* DEBUG_IOSAPIC */ |
| |
| #ifdef DEBUG_IOSAPIC_IRT |
| #define DBG_IRT(x...) printk(x) |
| #else |
| #define DBG_IRT(x...) |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| #define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa)) |
| #else |
| #define COMPARE_IRTE_ADDR(irte, hpa) \ |
| ((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL)) |
| #endif |
| |
| #define IOSAPIC_REG_SELECT 0x00 |
| #define IOSAPIC_REG_WINDOW 0x10 |
| #define IOSAPIC_REG_EOI 0x40 |
| |
| #define IOSAPIC_REG_VERSION 0x1 |
| |
| #define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2) |
| #define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2) |
| |
| static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg) |
| { |
| writel(reg, iosapic + IOSAPIC_REG_SELECT); |
| return readl(iosapic + IOSAPIC_REG_WINDOW); |
| } |
| |
| static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val) |
| { |
| writel(reg, iosapic + IOSAPIC_REG_SELECT); |
| writel(val, iosapic + IOSAPIC_REG_WINDOW); |
| } |
| |
| #define IOSAPIC_VERSION_MASK 0x000000ff |
| #define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK)) |
| |
| #define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000 |
| #define IOSAPIC_MAX_ENTRY_SHIFT 0x10 |
| #define IOSAPIC_IRDT_MAX_ENTRY(ver) \ |
| (int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT) |
| |
| /* bits in the "low" I/O Sapic IRdT entry */ |
| #define IOSAPIC_IRDT_ENABLE 0x10000 |
| #define IOSAPIC_IRDT_PO_LOW 0x02000 |
| #define IOSAPIC_IRDT_LEVEL_TRIG 0x08000 |
| #define IOSAPIC_IRDT_MODE_LPRI 0x00100 |
| |
| /* bits in the "high" I/O Sapic IRdT entry */ |
| #define IOSAPIC_IRDT_ID_EID_SHIFT 0x10 |
| |
| |
| static DEFINE_SPINLOCK(iosapic_lock); |
| |
| static inline void iosapic_eoi(void __iomem *addr, unsigned int data) |
| { |
| __raw_writel(data, addr); |
| } |
| |
| /* |
| ** REVISIT: future platforms may have more than one IRT. |
| ** If so, the following three fields form a structure which |
| ** then be linked into a list. Names are chosen to make searching |
| ** for them easy - not necessarily accurate (eg "cell"). |
| ** |
| ** Alternative: iosapic_info could point to the IRT it's in. |
| ** iosapic_register() could search a list of IRT's. |
| */ |
| static struct irt_entry *irt_cell; |
| static size_t irt_num_entry; |
| |
| static struct irt_entry *iosapic_alloc_irt(int num_entries) |
| { |
| unsigned long a; |
| |
| /* The IRT needs to be 8-byte aligned for the PDC call. |
| * Normally kmalloc would guarantee larger alignment, but |
| * if CONFIG_DEBUG_SLAB is enabled, then we can get only |
| * 4-byte alignment on 32-bit kernels |
| */ |
| a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL); |
| a = (a + 7UL) & ~7UL; |
| return (struct irt_entry *)a; |
| } |
| |
| /** |
| * iosapic_load_irt - Fill in the interrupt routing table |
| * @cell_num: The cell number of the CPU we're currently executing on |
| * @irt: The address to place the new IRT at |
| * @return The number of entries found |
| * |
| * The "Get PCI INT Routing Table Size" option returns the number of |
| * entries in the PCI interrupt routing table for the cell specified |
| * in the cell_number argument. The cell number must be for a cell |
| * within the caller's protection domain. |
| * |
| * The "Get PCI INT Routing Table" option returns, for the cell |
| * specified in the cell_number argument, the PCI interrupt routing |
| * table in the caller allocated memory pointed to by mem_addr. |
| * We assume the IRT only contains entries for I/O SAPIC and |
| * calculate the size based on the size of I/O sapic entries. |
| * |
| * The PCI interrupt routing table entry format is derived from the |
| * IA64 SAL Specification 2.4. The PCI interrupt routing table defines |
| * the routing of PCI interrupt signals between the PCI device output |
| * "pins" and the IO SAPICs' input "lines" (including core I/O PCI |
| * devices). This table does NOT include information for devices/slots |
| * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec. |
| * for the architected method of routing of IRQ's behind PPB's. |
| */ |
| |
| |
| static int __init |
| iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt) |
| { |
| long status; /* PDC return value status */ |
| struct irt_entry *table; /* start of interrupt routing tbl */ |
| unsigned long num_entries = 0UL; |
| |
| BUG_ON(!irt); |
| |
| if (is_pdc_pat()) { |
| /* Use pat pdc routine to get interrupt routing table size */ |
| DBG("calling get_irt_size (cell %ld)\n", cell_num); |
| status = pdc_pat_get_irt_size(&num_entries, cell_num); |
| DBG("get_irt_size: %ld\n", status); |
| |
| BUG_ON(status != PDC_OK); |
| BUG_ON(num_entries == 0); |
| |
| /* |
| ** allocate memory for interrupt routing table |
| ** This interface isn't really right. We are assuming |
| ** the contents of the table are exclusively |
| ** for I/O sapic devices. |
| */ |
| table = iosapic_alloc_irt(num_entries); |
| if (table == NULL) { |
| printk(KERN_WARNING MODULE_NAME ": read_irt : can " |
| "not alloc mem for IRT\n"); |
| return 0; |
| } |
| |
| /* get PCI INT routing table */ |
| status = pdc_pat_get_irt(table, cell_num); |
| DBG("pdc_pat_get_irt: %ld\n", status); |
| WARN_ON(status != PDC_OK); |
| } else { |
| /* |
| ** C3000/J5000 (and similar) platforms with Sprockets PDC |
| ** will return exactly one IRT for all iosapics. |
| ** So if we have one, don't need to get it again. |
| */ |
| if (irt_cell) |
| return 0; |
| |
| /* Should be using the Elroy's HPA, but it's ignored anyway */ |
| status = pdc_pci_irt_size(&num_entries, 0); |
| DBG("pdc_pci_irt_size: %ld\n", status); |
| |
| if (status != PDC_OK) { |
| /* Not a "legacy" system with I/O SAPIC either */ |
| return 0; |
| } |
| |
| BUG_ON(num_entries == 0); |
| |
| table = iosapic_alloc_irt(num_entries); |
| if (!table) { |
| printk(KERN_WARNING MODULE_NAME ": read_irt : can " |
| "not alloc mem for IRT\n"); |
| return 0; |
| } |
| |
| /* HPA ignored by this call too. */ |
| status = pdc_pci_irt(num_entries, 0, table); |
| BUG_ON(status != PDC_OK); |
| } |
| |
| /* return interrupt table address */ |
| *irt = table; |
| |
| #ifdef DEBUG_IOSAPIC_IRT |
| { |
| struct irt_entry *p = table; |
| int i; |
| |
| printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num); |
| printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n", |
| table, |
| num_entries, |
| (int) sizeof(struct irt_entry)); |
| |
| for (i = 0 ; i < num_entries ; i++, p++) { |
| printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n", |
| p->entry_type, p->entry_length, p->interrupt_type, |
| p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id, |
| p->src_seg_id, p->dest_iosapic_intin, |
| ((u32 *) p)[2], |
| ((u32 *) p)[3] |
| ); |
| } |
| } |
| #endif /* DEBUG_IOSAPIC_IRT */ |
| |
| return num_entries; |
| } |
| |
| |
| |
| void __init iosapic_init(void) |
| { |
| unsigned long cell = 0; |
| |
| DBG("iosapic_init()\n"); |
| |
| #ifdef __LP64__ |
| if (is_pdc_pat()) { |
| int status; |
| struct pdc_pat_cell_num cell_info; |
| |
| status = pdc_pat_cell_get_number(&cell_info); |
| if (status == PDC_OK) { |
| cell = cell_info.cell_num; |
| } |
| } |
| #endif |
| |
| /* get interrupt routing table for this cell */ |
| irt_num_entry = iosapic_load_irt(cell, &irt_cell); |
| if (irt_num_entry == 0) |
| irt_cell = NULL; /* old PDC w/o iosapic */ |
| } |
| |
| |
| /* |
| ** Return the IRT entry in case we need to look something else up. |
| */ |
| static struct irt_entry * |
| irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin) |
| { |
| struct irt_entry *i = irt_cell; |
| int cnt; /* track how many entries we've looked at */ |
| u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1); |
| |
| DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin); |
| |
| for (cnt=0; cnt < irt_num_entry; cnt++, i++) { |
| |
| /* |
| ** Validate: entry_type, entry_length, interrupt_type |
| ** |
| ** Difference between validate vs compare is the former |
| ** should print debug info and is not expected to "fail" |
| ** on current platforms. |
| */ |
| if (i->entry_type != IRT_IOSAPIC_TYPE) { |
| DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type); |
| continue; |
| } |
| |
| if (i->entry_length != IRT_IOSAPIC_LENGTH) { |
| DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length); |
| continue; |
| } |
| |
| if (i->interrupt_type != IRT_VECTORED_INTR) { |
| DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type); |
| continue; |
| } |
| |
| if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa)) |
| continue; |
| |
| if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno) |
| continue; |
| |
| /* |
| ** Ignore: src_bus_id and rc_seg_id correlate with |
| ** iosapic_info->isi_hpa on HP platforms. |
| ** If needed, pass in "PFA" (aka config space addr) |
| ** instead of slot. |
| */ |
| |
| /* Found it! */ |
| return i; |
| } |
| |
| printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n", |
| isi->isi_hpa, slot, intr_pin); |
| return NULL; |
| } |
| |
| |
| /* |
| ** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges. |
| ** Legacy PDC already does this translation for us and stores it in INTR_LINE. |
| ** |
| ** PAT PDC needs to basically do what legacy PDC does: |
| ** o read PIN |
| ** o adjust PIN in case device is "behind" a PPB |
| ** (eg 4-port 100BT and SCSI/LAN "Combo Card") |
| ** o convert slot/pin to I/O SAPIC input line. |
| ** |
| ** HP platforms only support: |
| ** o one level of skewing for any number of PPBs |
| ** o only support PCI-PCI Bridges. |
| */ |
| static struct irt_entry * |
| iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev) |
| { |
| u8 intr_pin, intr_slot; |
| |
| pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin); |
| |
| DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n", |
| pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin); |
| |
| if (intr_pin == 0) { |
| /* The device does NOT support/use IRQ lines. */ |
| return NULL; |
| } |
| |
| /* Check if pcidev behind a PPB */ |
| if (pcidev->bus->parent) { |
| /* Convert pcidev INTR_PIN into something we |
| ** can lookup in the IRT. |
| */ |
| #ifdef PCI_BRIDGE_FUNCS |
| /* |
| ** Proposal #1: |
| ** |
| ** call implementation specific translation function |
| ** This is architecturally "cleaner". HP-UX doesn't |
| ** support other secondary bus types (eg. E/ISA) directly. |
| ** May be needed for other processor (eg IA64) architectures |
| ** or by some ambitous soul who wants to watch TV. |
| */ |
| if (pci_bridge_funcs->xlate_intr_line) { |
| intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev); |
| } |
| #else /* PCI_BRIDGE_FUNCS */ |
| struct pci_bus *p = pcidev->bus; |
| /* |
| ** Proposal #2: |
| ** The "pin" is skewed ((pin + dev - 1) % 4). |
| ** |
| ** This isn't very clean since I/O SAPIC must assume: |
| ** - all platforms only have PCI busses. |
| ** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA) |
| ** - IRQ routing is only skewed once regardless of |
| ** the number of PPB's between iosapic and device. |
| ** (Bit3 expansion chassis follows this rule) |
| ** |
| ** Advantage is it's really easy to implement. |
| */ |
| intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin); |
| #endif /* PCI_BRIDGE_FUNCS */ |
| |
| /* |
| * Locate the host slot of the PPB. |
| */ |
| while (p->parent->parent) |
| p = p->parent; |
| |
| intr_slot = PCI_SLOT(p->self->devfn); |
| } else { |
| intr_slot = PCI_SLOT(pcidev->devfn); |
| } |
| DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n", |
| pcidev->bus->busn_res.start, intr_slot, intr_pin); |
| |
| return irt_find_irqline(isi, intr_slot, intr_pin); |
| } |
| |
| static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1) |
| { |
| struct iosapic_info *isp = vi->iosapic; |
| u8 idx = vi->irqline; |
| |
| *dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx)); |
| *dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx)); |
| } |
| |
| |
| static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1) |
| { |
| struct iosapic_info *isp = vi->iosapic; |
| |
| DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n", |
| vi->irqline, isp->isi_hpa, dp0, dp1); |
| |
| iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0); |
| |
| /* Read the window register to flush the writes down to HW */ |
| dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW); |
| |
| iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1); |
| |
| /* Read the window register to flush the writes down to HW */ |
| dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW); |
| } |
| |
| /* |
| ** set_irt prepares the data (dp0, dp1) according to the vector_info |
| ** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC |
| ** IRdT for the given "vector" (aka IRQ line). |
| */ |
| static void |
| iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1) |
| { |
| u32 mode = 0; |
| struct irt_entry *p = vi->irte; |
| |
| if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO) |
| mode |= IOSAPIC_IRDT_PO_LOW; |
| |
| if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG) |
| mode |= IOSAPIC_IRDT_LEVEL_TRIG; |
| |
| /* |
| ** IA64 REVISIT |
| ** PA doesn't support EXTINT or LPRIO bits. |
| */ |
| |
| *dp0 = mode | (u32) vi->txn_data; |
| |
| /* |
| ** Extracting id_eid isn't a real clean way of getting it. |
| ** But the encoding is the same for both PA and IA64 platforms. |
| */ |
| if (is_pdc_pat()) { |
| /* |
| ** PAT PDC just hands it to us "right". |
| ** txn_addr comes from cpu_data[x].txn_addr. |
| */ |
| *dp1 = (u32) (vi->txn_addr); |
| } else { |
| /* |
| ** eg if base_addr == 0xfffa0000), |
| ** we want to get 0xa0ff0000. |
| ** |
| ** eid 0x0ff00000 -> 0x00ff0000 |
| ** id 0x000ff000 -> 0xff000000 |
| */ |
| *dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) | |
| (((u32)vi->txn_addr & 0x000ff000) << 12); |
| } |
| DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1); |
| } |
| |
| |
| static void iosapic_mask_irq(struct irq_data *d) |
| { |
| unsigned long flags; |
| struct vector_info *vi = irq_data_get_irq_chip_data(d); |
| u32 d0, d1; |
| |
| spin_lock_irqsave(&iosapic_lock, flags); |
| iosapic_rd_irt_entry(vi, &d0, &d1); |
| d0 |= IOSAPIC_IRDT_ENABLE; |
| iosapic_wr_irt_entry(vi, d0, d1); |
| spin_unlock_irqrestore(&iosapic_lock, flags); |
| } |
| |
| static void iosapic_unmask_irq(struct irq_data *d) |
| { |
| struct vector_info *vi = irq_data_get_irq_chip_data(d); |
| u32 d0, d1; |
| |
| /* data is initialized by fixup_irq */ |
| WARN_ON(vi->txn_irq == 0); |
| |
| iosapic_set_irt_data(vi, &d0, &d1); |
| iosapic_wr_irt_entry(vi, d0, d1); |
| |
| #ifdef DEBUG_IOSAPIC_IRT |
| { |
| u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL); |
| printk("iosapic_enable_irq(): regs %p", vi->eoi_addr); |
| for ( ; t < vi->eoi_addr; t++) |
| printk(" %x", readl(t)); |
| printk("\n"); |
| } |
| |
| printk("iosapic_enable_irq(): sel "); |
| { |
| struct iosapic_info *isp = vi->iosapic; |
| |
| for (d0=0x10; d0<0x1e; d0++) { |
| d1 = iosapic_read(isp->addr, d0); |
| printk(" %x", d1); |
| } |
| } |
| printk("\n"); |
| #endif |
| |
| /* |
| * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is |
| * asserted. IRQ generally should not be asserted when a driver |
| * enables their IRQ. It can lead to "interesting" race conditions |
| * in the driver initialization sequence. |
| */ |
| DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq, |
| vi->eoi_addr, vi->eoi_data); |
| iosapic_eoi(vi->eoi_addr, vi->eoi_data); |
| } |
| |
| static void iosapic_eoi_irq(struct irq_data *d) |
| { |
| struct vector_info *vi = irq_data_get_irq_chip_data(d); |
| |
| iosapic_eoi(vi->eoi_addr, vi->eoi_data); |
| cpu_eoi_irq(d); |
| } |
| |
| #ifdef CONFIG_SMP |
| static int iosapic_set_affinity_irq(struct irq_data *d, |
| const struct cpumask *dest, bool force) |
| { |
| struct vector_info *vi = irq_data_get_irq_chip_data(d); |
| u32 d0, d1, dummy_d0; |
| unsigned long flags; |
| int dest_cpu; |
| |
| dest_cpu = cpu_check_affinity(d, dest); |
| if (dest_cpu < 0) |
| return -1; |
| |
| cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(dest_cpu)); |
| vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu); |
| |
| spin_lock_irqsave(&iosapic_lock, flags); |
| /* d1 contains the destination CPU, so only want to set that |
| * entry */ |
| iosapic_rd_irt_entry(vi, &d0, &d1); |
| iosapic_set_irt_data(vi, &dummy_d0, &d1); |
| iosapic_wr_irt_entry(vi, d0, d1); |
| spin_unlock_irqrestore(&iosapic_lock, flags); |
| |
| return 0; |
| } |
| #endif |
| |
| static struct irq_chip iosapic_interrupt_type = { |
| .name = "IO-SAPIC-level", |
| .irq_unmask = iosapic_unmask_irq, |
| .irq_mask = iosapic_mask_irq, |
| .irq_ack = cpu_ack_irq, |
| .irq_eoi = iosapic_eoi_irq, |
| #ifdef CONFIG_SMP |
| .irq_set_affinity = iosapic_set_affinity_irq, |
| #endif |
| }; |
| |
| int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev) |
| { |
| struct iosapic_info *isi = isi_obj; |
| struct irt_entry *irte = NULL; /* only used if PAT PDC */ |
| struct vector_info *vi; |
| int isi_line; /* line used by device */ |
| |
| if (!isi) { |
| printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n", |
| pci_name(pcidev)); |
| return -1; |
| } |
| |
| #ifdef CONFIG_SUPERIO |
| /* |
| * HACK ALERT! (non-compliant PCI device support) |
| * |
| * All SuckyIO interrupts are routed through the PIC's on function 1. |
| * But SuckyIO OHCI USB controller gets an IRT entry anyway because |
| * it advertises INT D for INT_PIN. Use that IRT entry to get the |
| * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*). |
| */ |
| if (is_superio_device(pcidev)) { |
| /* We must call superio_fixup_irq() to register the pdev */ |
| pcidev->irq = superio_fixup_irq(pcidev); |
| |
| /* Don't return if need to program the IOSAPIC's IRT... */ |
| if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN) |
| return pcidev->irq; |
| } |
| #endif /* CONFIG_SUPERIO */ |
| |
| /* lookup IRT entry for isi/slot/pin set */ |
| irte = iosapic_xlate_pin(isi, pcidev); |
| if (!irte) { |
| printk("iosapic: no IRTE for %s (IRQ not connected?)\n", |
| pci_name(pcidev)); |
| return -1; |
| } |
| DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n", |
| irte, |
| irte->entry_type, |
| irte->entry_length, |
| irte->polarity_trigger, |
| irte->src_bus_irq_devno, |
| irte->src_bus_id, |
| irte->src_seg_id, |
| irte->dest_iosapic_intin, |
| (u32) irte->dest_iosapic_addr); |
| isi_line = irte->dest_iosapic_intin; |
| |
| /* get vector info for this input line */ |
| vi = isi->isi_vector + isi_line; |
| DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi); |
| |
| /* If this IRQ line has already been setup, skip it */ |
| if (vi->irte) |
| goto out; |
| |
| vi->irte = irte; |
| |
| /* |
| * Allocate processor IRQ |
| * |
| * XXX/FIXME The txn_alloc_irq() code and related code should be |
| * moved to enable_irq(). That way we only allocate processor IRQ |
| * bits for devices that actually have drivers claiming them. |
| * Right now we assign an IRQ to every PCI device present, |
| * regardless of whether it's used or not. |
| */ |
| vi->txn_irq = txn_alloc_irq(8); |
| |
| if (vi->txn_irq < 0) |
| panic("I/O sapic: couldn't get TXN IRQ\n"); |
| |
| /* enable_irq() will use txn_* to program IRdT */ |
| vi->txn_addr = txn_alloc_addr(vi->txn_irq); |
| vi->txn_data = txn_alloc_data(vi->txn_irq); |
| |
| vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI; |
| vi->eoi_data = cpu_to_le32(vi->txn_data); |
| |
| cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi); |
| |
| out: |
| pcidev->irq = vi->txn_irq; |
| |
| DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n", |
| PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn), |
| pcidev->vendor, pcidev->device, isi_line, pcidev->irq); |
| |
| return pcidev->irq; |
| } |
| |
| static struct iosapic_info *iosapic_list; |
| |
| #ifdef CONFIG_64BIT |
| int iosapic_serial_irq(struct parisc_device *dev) |
| { |
| struct iosapic_info *isi; |
| struct irt_entry *irte; |
| struct vector_info *vi; |
| int cnt; |
| int intin; |
| |
| intin = (dev->mod_info >> 24) & 15; |
| |
| /* lookup IRT entry for isi/slot/pin set */ |
| for (cnt = 0; cnt < irt_num_entry; cnt++) { |
| irte = &irt_cell[cnt]; |
| if (COMPARE_IRTE_ADDR(irte, dev->mod0) && |
| irte->dest_iosapic_intin == intin) |
| break; |
| } |
| if (cnt >= irt_num_entry) |
| return 0; /* no irq found, force polling */ |
| |
| DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n", |
| irte, |
| irte->entry_type, |
| irte->entry_length, |
| irte->polarity_trigger, |
| irte->src_bus_irq_devno, |
| irte->src_bus_id, |
| irte->src_seg_id, |
| irte->dest_iosapic_intin, |
| (u32) irte->dest_iosapic_addr); |
| |
| /* search for iosapic */ |
| for (isi = iosapic_list; isi; isi = isi->isi_next) |
| if (isi->isi_hpa == dev->mod0) |
| break; |
| if (!isi) |
| return 0; /* no iosapic found, force polling */ |
| |
| /* get vector info for this input line */ |
| vi = isi->isi_vector + intin; |
| DBG_IRT("iosapic_serial_irq: line %d vi 0x%p\n", iosapic_intin, vi); |
| |
| /* If this IRQ line has already been setup, skip it */ |
| if (vi->irte) |
| goto out; |
| |
| vi->irte = irte; |
| |
| /* |
| * Allocate processor IRQ |
| * |
| * XXX/FIXME The txn_alloc_irq() code and related code should be |
| * moved to enable_irq(). That way we only allocate processor IRQ |
| * bits for devices that actually have drivers claiming them. |
| * Right now we assign an IRQ to every PCI device present, |
| * regardless of whether it's used or not. |
| */ |
| vi->txn_irq = txn_alloc_irq(8); |
| |
| if (vi->txn_irq < 0) |
| panic("I/O sapic: couldn't get TXN IRQ\n"); |
| |
| /* enable_irq() will use txn_* to program IRdT */ |
| vi->txn_addr = txn_alloc_addr(vi->txn_irq); |
| vi->txn_data = txn_alloc_data(vi->txn_irq); |
| |
| vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI; |
| vi->eoi_data = cpu_to_le32(vi->txn_data); |
| |
| cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi); |
| |
| out: |
| |
| return vi->txn_irq; |
| } |
| EXPORT_SYMBOL(iosapic_serial_irq); |
| #endif |
| |
| |
| /* |
| ** squirrel away the I/O Sapic Version |
| */ |
| static unsigned int |
| iosapic_rd_version(struct iosapic_info *isi) |
| { |
| return iosapic_read(isi->addr, IOSAPIC_REG_VERSION); |
| } |
| |
| |
| /* |
| ** iosapic_register() is called by "drivers" with an integrated I/O SAPIC. |
| ** Caller must be certain they have an I/O SAPIC and know its MMIO address. |
| ** |
| ** o allocate iosapic_info and add it to the list |
| ** o read iosapic version and squirrel that away |
| ** o read size of IRdT. |
| ** o allocate and initialize isi_vector[] |
| ** o allocate irq region |
| */ |
| void *iosapic_register(unsigned long hpa) |
| { |
| struct iosapic_info *isi = NULL; |
| struct irt_entry *irte = irt_cell; |
| struct vector_info *vip; |
| int cnt; /* track how many entries we've looked at */ |
| |
| /* |
| * Astro based platforms can only support PCI OLARD if they implement |
| * PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT. |
| * Search the IRT and ignore iosapic's which aren't in the IRT. |
| */ |
| for (cnt=0; cnt < irt_num_entry; cnt++, irte++) { |
| WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type); |
| if (COMPARE_IRTE_ADDR(irte, hpa)) |
| break; |
| } |
| |
| if (cnt >= irt_num_entry) { |
| DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa); |
| return NULL; |
| } |
| |
| isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL); |
| if (!isi) { |
| BUG(); |
| return NULL; |
| } |
| |
| isi->addr = ioremap_nocache(hpa, 4096); |
| isi->isi_hpa = hpa; |
| isi->isi_version = iosapic_rd_version(isi); |
| isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1; |
| |
| vip = isi->isi_vector = kcalloc(isi->isi_num_vectors, |
| sizeof(struct vector_info), GFP_KERNEL); |
| if (vip == NULL) { |
| kfree(isi); |
| return NULL; |
| } |
| |
| for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) { |
| vip->irqline = (unsigned char) cnt; |
| vip->iosapic = isi; |
| } |
| isi->isi_next = iosapic_list; |
| iosapic_list = isi; |
| return isi; |
| } |
| |
| |
| #ifdef DEBUG_IOSAPIC |
| |
| static void |
| iosapic_prt_irt(void *irt, long num_entry) |
| { |
| unsigned int i, *irp = (unsigned int *) irt; |
| |
| |
| printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry); |
| |
| for (i=0; i<num_entry; i++, irp += 4) { |
| printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n", |
| irp, i, irp[0], irp[1], irp[2], irp[3]); |
| } |
| } |
| |
| |
| static void |
| iosapic_prt_vi(struct vector_info *vi) |
| { |
| printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi); |
| printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status); |
| printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq); |
| printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr); |
| printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data); |
| printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr); |
| printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data); |
| } |
| |
| |
| static void |
| iosapic_prt_isi(struct iosapic_info *isi) |
| { |
| printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi); |
| printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa); |
| printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status); |
| printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version); |
| printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector); |
| } |
| #endif /* DEBUG_IOSAPIC */ |