| /* |
| * pSeries NUMA support |
| * |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #define pr_fmt(fmt) "numa: " fmt |
| |
| #include <linux/threads.h> |
| #include <linux/bootmem.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/export.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <linux/pfn.h> |
| #include <linux/cpuset.h> |
| #include <linux/node.h> |
| #include <linux/stop_machine.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| #include <asm/cputhreads.h> |
| #include <asm/sparsemem.h> |
| #include <asm/prom.h> |
| #include <asm/smp.h> |
| #include <asm/cputhreads.h> |
| #include <asm/topology.h> |
| #include <asm/firmware.h> |
| #include <asm/paca.h> |
| #include <asm/hvcall.h> |
| #include <asm/setup.h> |
| #include <asm/vdso.h> |
| |
| static int numa_enabled = 1; |
| |
| static char *cmdline __initdata; |
| |
| static int numa_debug; |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } |
| |
| int numa_cpu_lookup_table[NR_CPUS]; |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
| struct pglist_data *node_data[MAX_NUMNODES]; |
| |
| EXPORT_SYMBOL(numa_cpu_lookup_table); |
| EXPORT_SYMBOL(node_to_cpumask_map); |
| EXPORT_SYMBOL(node_data); |
| |
| static int min_common_depth; |
| static int n_mem_addr_cells, n_mem_size_cells; |
| static int form1_affinity; |
| |
| #define MAX_DISTANCE_REF_POINTS 4 |
| static int distance_ref_points_depth; |
| static const __be32 *distance_ref_points; |
| static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; |
| |
| /* |
| * Allocate node_to_cpumask_map based on number of available nodes |
| * Requires node_possible_map to be valid. |
| * |
| * Note: cpumask_of_node() is not valid until after this is done. |
| */ |
| static void __init setup_node_to_cpumask_map(void) |
| { |
| unsigned int node; |
| |
| /* setup nr_node_ids if not done yet */ |
| if (nr_node_ids == MAX_NUMNODES) |
| setup_nr_node_ids(); |
| |
| /* allocate the map */ |
| for_each_node(node) |
| alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
| |
| /* cpumask_of_node() will now work */ |
| dbg("Node to cpumask map for %d nodes\n", nr_node_ids); |
| } |
| |
| static int __init fake_numa_create_new_node(unsigned long end_pfn, |
| unsigned int *nid) |
| { |
| unsigned long long mem; |
| char *p = cmdline; |
| static unsigned int fake_nid; |
| static unsigned long long curr_boundary; |
| |
| /* |
| * Modify node id, iff we started creating NUMA nodes |
| * We want to continue from where we left of the last time |
| */ |
| if (fake_nid) |
| *nid = fake_nid; |
| /* |
| * In case there are no more arguments to parse, the |
| * node_id should be the same as the last fake node id |
| * (we've handled this above). |
| */ |
| if (!p) |
| return 0; |
| |
| mem = memparse(p, &p); |
| if (!mem) |
| return 0; |
| |
| if (mem < curr_boundary) |
| return 0; |
| |
| curr_boundary = mem; |
| |
| if ((end_pfn << PAGE_SHIFT) > mem) { |
| /* |
| * Skip commas and spaces |
| */ |
| while (*p == ',' || *p == ' ' || *p == '\t') |
| p++; |
| |
| cmdline = p; |
| fake_nid++; |
| *nid = fake_nid; |
| dbg("created new fake_node with id %d\n", fake_nid); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void reset_numa_cpu_lookup_table(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) |
| numa_cpu_lookup_table[cpu] = -1; |
| } |
| |
| static void update_numa_cpu_lookup_table(unsigned int cpu, int node) |
| { |
| numa_cpu_lookup_table[cpu] = node; |
| } |
| |
| static void map_cpu_to_node(int cpu, int node) |
| { |
| update_numa_cpu_lookup_table(cpu, node); |
| |
| dbg("adding cpu %d to node %d\n", cpu, node); |
| |
| if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) |
| cpumask_set_cpu(cpu, node_to_cpumask_map[node]); |
| } |
| |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) |
| static void unmap_cpu_from_node(unsigned long cpu) |
| { |
| int node = numa_cpu_lookup_table[cpu]; |
| |
| dbg("removing cpu %lu from node %d\n", cpu, node); |
| |
| if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { |
| cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); |
| } else { |
| printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", |
| cpu, node); |
| } |
| } |
| #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ |
| |
| /* must hold reference to node during call */ |
| static const __be32 *of_get_associativity(struct device_node *dev) |
| { |
| return of_get_property(dev, "ibm,associativity", NULL); |
| } |
| |
| /* |
| * Returns the property linux,drconf-usable-memory if |
| * it exists (the property exists only in kexec/kdump kernels, |
| * added by kexec-tools) |
| */ |
| static const __be32 *of_get_usable_memory(struct device_node *memory) |
| { |
| const __be32 *prop; |
| u32 len; |
| prop = of_get_property(memory, "linux,drconf-usable-memory", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return NULL; |
| return prop; |
| } |
| |
| int __node_distance(int a, int b) |
| { |
| int i; |
| int distance = LOCAL_DISTANCE; |
| |
| if (!form1_affinity) |
| return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) |
| break; |
| |
| /* Double the distance for each NUMA level */ |
| distance *= 2; |
| } |
| |
| return distance; |
| } |
| EXPORT_SYMBOL(__node_distance); |
| |
| static void initialize_distance_lookup_table(int nid, |
| const __be32 *associativity) |
| { |
| int i; |
| |
| if (!form1_affinity) |
| return; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| const __be32 *entry; |
| |
| entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; |
| distance_lookup_table[nid][i] = of_read_number(entry, 1); |
| } |
| } |
| |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa |
| * info is found. |
| */ |
| static int associativity_to_nid(const __be32 *associativity) |
| { |
| int nid = -1; |
| |
| if (min_common_depth == -1) |
| goto out; |
| |
| if (of_read_number(associativity, 1) >= min_common_depth) |
| nid = of_read_number(&associativity[min_common_depth], 1); |
| |
| /* POWER4 LPAR uses 0xffff as invalid node */ |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = -1; |
| |
| if (nid > 0 && |
| of_read_number(associativity, 1) >= distance_ref_points_depth) { |
| /* |
| * Skip the length field and send start of associativity array |
| */ |
| initialize_distance_lookup_table(nid, associativity + 1); |
| } |
| |
| out: |
| return nid; |
| } |
| |
| /* Returns the nid associated with the given device tree node, |
| * or -1 if not found. |
| */ |
| static int of_node_to_nid_single(struct device_node *device) |
| { |
| int nid = -1; |
| const __be32 *tmp; |
| |
| tmp = of_get_associativity(device); |
| if (tmp) |
| nid = associativity_to_nid(tmp); |
| return nid; |
| } |
| |
| /* Walk the device tree upwards, looking for an associativity id */ |
| int of_node_to_nid(struct device_node *device) |
| { |
| int nid = -1; |
| |
| of_node_get(device); |
| while (device) { |
| nid = of_node_to_nid_single(device); |
| if (nid != -1) |
| break; |
| |
| device = of_get_next_parent(device); |
| } |
| of_node_put(device); |
| |
| return nid; |
| } |
| EXPORT_SYMBOL_GPL(of_node_to_nid); |
| |
| static int __init find_min_common_depth(void) |
| { |
| int depth; |
| struct device_node *root; |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| root = of_find_node_by_path("/ibm,opal"); |
| else |
| root = of_find_node_by_path("/rtas"); |
| if (!root) |
| root = of_find_node_by_path("/"); |
| |
| /* |
| * This property is a set of 32-bit integers, each representing |
| * an index into the ibm,associativity nodes. |
| * |
| * With form 0 affinity the first integer is for an SMP configuration |
| * (should be all 0's) and the second is for a normal NUMA |
| * configuration. We have only one level of NUMA. |
| * |
| * With form 1 affinity the first integer is the most significant |
| * NUMA boundary and the following are progressively less significant |
| * boundaries. There can be more than one level of NUMA. |
| */ |
| distance_ref_points = of_get_property(root, |
| "ibm,associativity-reference-points", |
| &distance_ref_points_depth); |
| |
| if (!distance_ref_points) { |
| dbg("NUMA: ibm,associativity-reference-points not found.\n"); |
| goto err; |
| } |
| |
| distance_ref_points_depth /= sizeof(int); |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL) || |
| firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { |
| dbg("Using form 1 affinity\n"); |
| form1_affinity = 1; |
| } |
| |
| if (form1_affinity) { |
| depth = of_read_number(distance_ref_points, 1); |
| } else { |
| if (distance_ref_points_depth < 2) { |
| printk(KERN_WARNING "NUMA: " |
| "short ibm,associativity-reference-points\n"); |
| goto err; |
| } |
| |
| depth = of_read_number(&distance_ref_points[1], 1); |
| } |
| |
| /* |
| * Warn and cap if the hardware supports more than |
| * MAX_DISTANCE_REF_POINTS domains. |
| */ |
| if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { |
| printk(KERN_WARNING "NUMA: distance array capped at " |
| "%d entries\n", MAX_DISTANCE_REF_POINTS); |
| distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; |
| } |
| |
| of_node_put(root); |
| return depth; |
| |
| err: |
| of_node_put(root); |
| return -1; |
| } |
| |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) |
| { |
| struct device_node *memory = NULL; |
| |
| memory = of_find_node_by_type(memory, "memory"); |
| if (!memory) |
| panic("numa.c: No memory nodes found!"); |
| |
| *n_addr_cells = of_n_addr_cells(memory); |
| *n_size_cells = of_n_size_cells(memory); |
| of_node_put(memory); |
| } |
| |
| static unsigned long read_n_cells(int n, const __be32 **buf) |
| { |
| unsigned long result = 0; |
| |
| while (n--) { |
| result = (result << 32) | of_read_number(*buf, 1); |
| (*buf)++; |
| } |
| return result; |
| } |
| |
| /* |
| * Read the next memblock list entry from the ibm,dynamic-memory property |
| * and return the information in the provided of_drconf_cell structure. |
| */ |
| static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) |
| { |
| const __be32 *cp; |
| |
| drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); |
| |
| cp = *cellp; |
| drmem->drc_index = of_read_number(cp, 1); |
| drmem->reserved = of_read_number(&cp[1], 1); |
| drmem->aa_index = of_read_number(&cp[2], 1); |
| drmem->flags = of_read_number(&cp[3], 1); |
| |
| *cellp = cp + 4; |
| } |
| |
| /* |
| * Retrieve and validate the ibm,dynamic-memory property of the device tree. |
| * |
| * The layout of the ibm,dynamic-memory property is a number N of memblock |
| * list entries followed by N memblock list entries. Each memblock list entry |
| * contains information as laid out in the of_drconf_cell struct above. |
| */ |
| static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) |
| { |
| const __be32 *prop; |
| u32 len, entries; |
| |
| prop = of_get_property(memory, "ibm,dynamic-memory", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| entries = of_read_number(prop++, 1); |
| |
| /* Now that we know the number of entries, revalidate the size |
| * of the property read in to ensure we have everything |
| */ |
| if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) |
| return 0; |
| |
| *dm = prop; |
| return entries; |
| } |
| |
| /* |
| * Retrieve and validate the ibm,lmb-size property for drconf memory |
| * from the device tree. |
| */ |
| static u64 of_get_lmb_size(struct device_node *memory) |
| { |
| const __be32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,lmb-size", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| return read_n_cells(n_mem_size_cells, &prop); |
| } |
| |
| struct assoc_arrays { |
| u32 n_arrays; |
| u32 array_sz; |
| const __be32 *arrays; |
| }; |
| |
| /* |
| * Retrieve and validate the list of associativity arrays for drconf |
| * memory from the ibm,associativity-lookup-arrays property of the |
| * device tree.. |
| * |
| * The layout of the ibm,associativity-lookup-arrays property is a number N |
| * indicating the number of associativity arrays, followed by a number M |
| * indicating the size of each associativity array, followed by a list |
| * of N associativity arrays. |
| */ |
| static int of_get_assoc_arrays(struct device_node *memory, |
| struct assoc_arrays *aa) |
| { |
| const __be32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); |
| if (!prop || len < 2 * sizeof(unsigned int)) |
| return -1; |
| |
| aa->n_arrays = of_read_number(prop++, 1); |
| aa->array_sz = of_read_number(prop++, 1); |
| |
| /* Now that we know the number of arrays and size of each array, |
| * revalidate the size of the property read in. |
| */ |
| if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) |
| return -1; |
| |
| aa->arrays = prop; |
| return 0; |
| } |
| |
| /* |
| * This is like of_node_to_nid_single() for memory represented in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, |
| struct assoc_arrays *aa) |
| { |
| int default_nid = 0; |
| int nid = default_nid; |
| int index; |
| |
| if (min_common_depth > 0 && min_common_depth <= aa->array_sz && |
| !(drmem->flags & DRCONF_MEM_AI_INVALID) && |
| drmem->aa_index < aa->n_arrays) { |
| index = drmem->aa_index * aa->array_sz + min_common_depth - 1; |
| nid = of_read_number(&aa->arrays[index], 1); |
| |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = default_nid; |
| |
| if (nid > 0) { |
| index = drmem->aa_index * aa->array_sz; |
| initialize_distance_lookup_table(nid, |
| &aa->arrays[index]); |
| } |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Figure out to which domain a cpu belongs and stick it there. |
| * Return the id of the domain used. |
| */ |
| static int numa_setup_cpu(unsigned long lcpu) |
| { |
| int nid = -1; |
| struct device_node *cpu; |
| |
| /* |
| * If a valid cpu-to-node mapping is already available, use it |
| * directly instead of querying the firmware, since it represents |
| * the most recent mapping notified to us by the platform (eg: VPHN). |
| */ |
| if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { |
| map_cpu_to_node(lcpu, nid); |
| return nid; |
| } |
| |
| cpu = of_get_cpu_node(lcpu, NULL); |
| |
| if (!cpu) { |
| WARN_ON(1); |
| if (cpu_present(lcpu)) |
| goto out_present; |
| else |
| goto out; |
| } |
| |
| nid = of_node_to_nid_single(cpu); |
| |
| out_present: |
| if (nid < 0 || !node_online(nid)) |
| nid = first_online_node; |
| |
| map_cpu_to_node(lcpu, nid); |
| of_node_put(cpu); |
| out: |
| return nid; |
| } |
| |
| static void verify_cpu_node_mapping(int cpu, int node) |
| { |
| int base, sibling, i; |
| |
| /* Verify that all the threads in the core belong to the same node */ |
| base = cpu_first_thread_sibling(cpu); |
| |
| for (i = 0; i < threads_per_core; i++) { |
| sibling = base + i; |
| |
| if (sibling == cpu || cpu_is_offline(sibling)) |
| continue; |
| |
| if (cpu_to_node(sibling) != node) { |
| WARN(1, "CPU thread siblings %d and %d don't belong" |
| " to the same node!\n", cpu, sibling); |
| break; |
| } |
| } |
| } |
| |
| /* Must run before sched domains notifier. */ |
| static int ppc_numa_cpu_prepare(unsigned int cpu) |
| { |
| int nid; |
| |
| nid = numa_setup_cpu(cpu); |
| verify_cpu_node_mapping(cpu, nid); |
| return 0; |
| } |
| |
| static int ppc_numa_cpu_dead(unsigned int cpu) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| unmap_cpu_from_node(cpu); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Check and possibly modify a memory region to enforce the memory limit. |
| * |
| * Returns the size the region should have to enforce the memory limit. |
| * This will either be the original value of size, a truncated value, |
| * or zero. If the returned value of size is 0 the region should be |
| * discarded as it lies wholly above the memory limit. |
| */ |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start, |
| unsigned long size) |
| { |
| /* |
| * We use memblock_end_of_DRAM() in here instead of memory_limit because |
| * we've already adjusted it for the limit and it takes care of |
| * having memory holes below the limit. Also, in the case of |
| * iommu_is_off, memory_limit is not set but is implicitly enforced. |
| */ |
| |
| if (start + size <= memblock_end_of_DRAM()) |
| return size; |
| |
| if (start >= memblock_end_of_DRAM()) |
| return 0; |
| |
| return memblock_end_of_DRAM() - start; |
| } |
| |
| /* |
| * Reads the counter for a given entry in |
| * linux,drconf-usable-memory property |
| */ |
| static inline int __init read_usm_ranges(const __be32 **usm) |
| { |
| /* |
| * For each lmb in ibm,dynamic-memory a corresponding |
| * entry in linux,drconf-usable-memory property contains |
| * a counter followed by that many (base, size) duple. |
| * read the counter from linux,drconf-usable-memory |
| */ |
| return read_n_cells(n_mem_size_cells, usm); |
| } |
| |
| /* |
| * Extract NUMA information from the ibm,dynamic-reconfiguration-memory |
| * node. This assumes n_mem_{addr,size}_cells have been set. |
| */ |
| static void __init parse_drconf_memory(struct device_node *memory) |
| { |
| const __be32 *uninitialized_var(dm), *usm; |
| unsigned int n, rc, ranges, is_kexec_kdump = 0; |
| unsigned long lmb_size, base, size, sz; |
| int nid; |
| struct assoc_arrays aa = { .arrays = NULL }; |
| |
| n = of_get_drconf_memory(memory, &dm); |
| if (!n) |
| return; |
| |
| lmb_size = of_get_lmb_size(memory); |
| if (!lmb_size) |
| return; |
| |
| rc = of_get_assoc_arrays(memory, &aa); |
| if (rc) |
| return; |
| |
| /* check if this is a kexec/kdump kernel */ |
| usm = of_get_usable_memory(memory); |
| if (usm != NULL) |
| is_kexec_kdump = 1; |
| |
| for (; n != 0; --n) { |
| struct of_drconf_cell drmem; |
| |
| read_drconf_cell(&drmem, &dm); |
| |
| /* skip this block if the reserved bit is set in flags (0x80) |
| or if the block is not assigned to this partition (0x8) */ |
| if ((drmem.flags & DRCONF_MEM_RESERVED) |
| || !(drmem.flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| base = drmem.base_addr; |
| size = lmb_size; |
| ranges = 1; |
| |
| if (is_kexec_kdump) { |
| ranges = read_usm_ranges(&usm); |
| if (!ranges) /* there are no (base, size) duple */ |
| continue; |
| } |
| do { |
| if (is_kexec_kdump) { |
| base = read_n_cells(n_mem_addr_cells, &usm); |
| size = read_n_cells(n_mem_size_cells, &usm); |
| } |
| nid = of_drconf_to_nid_single(&drmem, &aa); |
| fake_numa_create_new_node( |
| ((base + size) >> PAGE_SHIFT), |
| &nid); |
| node_set_online(nid); |
| sz = numa_enforce_memory_limit(base, size); |
| if (sz) |
| memblock_set_node(base, sz, |
| &memblock.memory, nid); |
| } while (--ranges); |
| } |
| } |
| |
| static int __init parse_numa_properties(void) |
| { |
| struct device_node *memory; |
| int default_nid = 0; |
| unsigned long i; |
| |
| if (numa_enabled == 0) { |
| printk(KERN_WARNING "NUMA disabled by user\n"); |
| return -1; |
| } |
| |
| min_common_depth = find_min_common_depth(); |
| |
| if (min_common_depth < 0) |
| return min_common_depth; |
| |
| dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); |
| |
| /* |
| * Even though we connect cpus to numa domains later in SMP |
| * init, we need to know the node ids now. This is because |
| * each node to be onlined must have NODE_DATA etc backing it. |
| */ |
| for_each_present_cpu(i) { |
| struct device_node *cpu; |
| int nid; |
| |
| cpu = of_get_cpu_node(i, NULL); |
| BUG_ON(!cpu); |
| nid = of_node_to_nid_single(cpu); |
| of_node_put(cpu); |
| |
| /* |
| * Don't fall back to default_nid yet -- we will plug |
| * cpus into nodes once the memory scan has discovered |
| * the topology. |
| */ |
| if (nid < 0) |
| continue; |
| node_set_online(nid); |
| } |
| |
| get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start; |
| unsigned long size; |
| int nid; |
| int ranges; |
| const __be32 *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, |
| "linux,usable-memory", &len); |
| if (!memcell_buf || len <= 0) |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| new_range: |
| /* these are order-sensitive, and modify the buffer pointer */ |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| /* |
| * Assumption: either all memory nodes or none will |
| * have associativity properties. If none, then |
| * everything goes to default_nid. |
| */ |
| nid = of_node_to_nid_single(memory); |
| if (nid < 0) |
| nid = default_nid; |
| |
| fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); |
| node_set_online(nid); |
| |
| if (!(size = numa_enforce_memory_limit(start, size))) { |
| if (--ranges) |
| goto new_range; |
| else |
| continue; |
| } |
| |
| memblock_set_node(start, size, &memblock.memory, nid); |
| |
| if (--ranges) |
| goto new_range; |
| } |
| |
| /* |
| * Now do the same thing for each MEMBLOCK listed in the |
| * ibm,dynamic-memory property in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) |
| parse_drconf_memory(memory); |
| |
| return 0; |
| } |
| |
| static void __init setup_nonnuma(void) |
| { |
| unsigned long top_of_ram = memblock_end_of_DRAM(); |
| unsigned long total_ram = memblock_phys_mem_size(); |
| unsigned long start_pfn, end_pfn; |
| unsigned int nid = 0; |
| struct memblock_region *reg; |
| |
| printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| |
| for_each_memblock(memory, reg) { |
| start_pfn = memblock_region_memory_base_pfn(reg); |
| end_pfn = memblock_region_memory_end_pfn(reg); |
| |
| fake_numa_create_new_node(end_pfn, &nid); |
| memblock_set_node(PFN_PHYS(start_pfn), |
| PFN_PHYS(end_pfn - start_pfn), |
| &memblock.memory, nid); |
| node_set_online(nid); |
| } |
| } |
| |
| void __init dump_numa_cpu_topology(void) |
| { |
| unsigned int node; |
| unsigned int cpu, count; |
| |
| if (min_common_depth == -1 || !numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| pr_info("Node %d CPUs:", node); |
| |
| count = 0; |
| /* |
| * If we used a CPU iterator here we would miss printing |
| * the holes in the cpumap. |
| */ |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
| if (cpumask_test_cpu(cpu, |
| node_to_cpumask_map[node])) { |
| if (count == 0) |
| pr_cont(" %u", cpu); |
| ++count; |
| } else { |
| if (count > 1) |
| pr_cont("-%u", cpu - 1); |
| count = 0; |
| } |
| } |
| |
| if (count > 1) |
| pr_cont("-%u", nr_cpu_ids - 1); |
| pr_cont("\n"); |
| } |
| } |
| |
| /* Initialize NODE_DATA for a node on the local memory */ |
| static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) |
| { |
| u64 spanned_pages = end_pfn - start_pfn; |
| const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); |
| u64 nd_pa; |
| void *nd; |
| int tnid; |
| |
| if (spanned_pages) |
| pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", |
| nid, start_pfn << PAGE_SHIFT, |
| (end_pfn << PAGE_SHIFT) - 1); |
| else |
| pr_info("Initmem setup node %d\n", nid); |
| |
| nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); |
| nd = __va(nd_pa); |
| |
| /* report and initialize */ |
| pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", |
| nd_pa, nd_pa + nd_size - 1); |
| tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); |
| if (tnid != nid) |
| pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); |
| |
| node_data[nid] = nd; |
| memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); |
| NODE_DATA(nid)->node_id = nid; |
| NODE_DATA(nid)->node_start_pfn = start_pfn; |
| NODE_DATA(nid)->node_spanned_pages = spanned_pages; |
| } |
| |
| void __init initmem_init(void) |
| { |
| int nid, cpu; |
| |
| max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| max_pfn = max_low_pfn; |
| |
| if (parse_numa_properties()) |
| setup_nonnuma(); |
| |
| memblock_dump_all(); |
| |
| /* |
| * Reduce the possible NUMA nodes to the online NUMA nodes, |
| * since we do not support node hotplug. This ensures that we |
| * lower the maximum NUMA node ID to what is actually present. |
| */ |
| nodes_and(node_possible_map, node_possible_map, node_online_map); |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| setup_node_data(nid, start_pfn, end_pfn); |
| sparse_memory_present_with_active_regions(nid); |
| } |
| |
| sparse_init(); |
| |
| setup_node_to_cpumask_map(); |
| |
| reset_numa_cpu_lookup_table(); |
| |
| /* |
| * We need the numa_cpu_lookup_table to be accurate for all CPUs, |
| * even before we online them, so that we can use cpu_to_{node,mem} |
| * early in boot, cf. smp_prepare_cpus(). |
| * _nocalls() + manual invocation is used because cpuhp is not yet |
| * initialized for the boot CPU. |
| */ |
| cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "POWER_NUMA_PREPARE", |
| ppc_numa_cpu_prepare, ppc_numa_cpu_dead); |
| for_each_present_cpu(cpu) |
| numa_setup_cpu(cpu); |
| } |
| |
| static int __init early_numa(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "off")) |
| numa_enabled = 0; |
| |
| if (strstr(p, "debug")) |
| numa_debug = 1; |
| |
| p = strstr(p, "fake="); |
| if (p) |
| cmdline = p + strlen("fake="); |
| |
| return 0; |
| } |
| early_param("numa", early_numa); |
| |
| static bool topology_updates_enabled = true; |
| |
| static int __init early_topology_updates(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (!strcmp(p, "off")) { |
| pr_info("Disabling topology updates\n"); |
| topology_updates_enabled = false; |
| } |
| |
| return 0; |
| } |
| early_param("topology_updates", early_topology_updates); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Find the node associated with a hot added memory section for |
| * memory represented in the device tree by the property |
| * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. |
| */ |
| static int hot_add_drconf_scn_to_nid(struct device_node *memory, |
| unsigned long scn_addr) |
| { |
| const __be32 *dm; |
| unsigned int drconf_cell_cnt, rc; |
| unsigned long lmb_size; |
| struct assoc_arrays aa; |
| int nid = -1; |
| |
| drconf_cell_cnt = of_get_drconf_memory(memory, &dm); |
| if (!drconf_cell_cnt) |
| return -1; |
| |
| lmb_size = of_get_lmb_size(memory); |
| if (!lmb_size) |
| return -1; |
| |
| rc = of_get_assoc_arrays(memory, &aa); |
| if (rc) |
| return -1; |
| |
| for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { |
| struct of_drconf_cell drmem; |
| |
| read_drconf_cell(&drmem, &dm); |
| |
| /* skip this block if it is reserved or not assigned to |
| * this partition */ |
| if ((drmem.flags & DRCONF_MEM_RESERVED) |
| || !(drmem.flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| if ((scn_addr < drmem.base_addr) |
| || (scn_addr >= (drmem.base_addr + lmb_size))) |
| continue; |
| |
| nid = of_drconf_to_nid_single(&drmem, &aa); |
| break; |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section for memory |
| * represented in the device tree as a node (i.e. memory@XXXX) for |
| * each memblock. |
| */ |
| static int hot_add_node_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory; |
| int nid = -1; |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start, size; |
| int ranges; |
| const __be32 *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| |
| while (ranges--) { |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| if ((scn_addr < start) || (scn_addr >= (start + size))) |
| continue; |
| |
| nid = of_node_to_nid_single(memory); |
| break; |
| } |
| |
| if (nid >= 0) |
| break; |
| } |
| |
| of_node_put(memory); |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section. Section |
| * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that |
| * sections are fully contained within a single MEMBLOCK. |
| */ |
| int hot_add_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory = NULL; |
| int nid; |
| |
| if (!numa_enabled || (min_common_depth < 0)) |
| return first_online_node; |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| nid = hot_add_drconf_scn_to_nid(memory, scn_addr); |
| of_node_put(memory); |
| } else { |
| nid = hot_add_node_scn_to_nid(scn_addr); |
| } |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = first_online_node; |
| |
| return nid; |
| } |
| |
| static u64 hot_add_drconf_memory_max(void) |
| { |
| struct device_node *memory = NULL; |
| struct device_node *dn = NULL; |
| unsigned int drconf_cell_cnt = 0; |
| u64 lmb_size = 0; |
| const __be32 *dm = NULL; |
| const __be64 *lrdr = NULL; |
| struct of_drconf_cell drmem; |
| |
| dn = of_find_node_by_path("/rtas"); |
| if (dn) { |
| lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); |
| of_node_put(dn); |
| if (lrdr) |
| return be64_to_cpup(lrdr); |
| } |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| drconf_cell_cnt = of_get_drconf_memory(memory, &dm); |
| lmb_size = of_get_lmb_size(memory); |
| |
| /* Advance to the last cell, each cell has 6 32 bit integers */ |
| dm += (drconf_cell_cnt - 1) * 6; |
| read_drconf_cell(&drmem, &dm); |
| of_node_put(memory); |
| return drmem.base_addr + lmb_size; |
| } |
| return 0; |
| } |
| |
| /* |
| * memory_hotplug_max - return max address of memory that may be added |
| * |
| * This is currently only used on systems that support drconfig memory |
| * hotplug. |
| */ |
| u64 memory_hotplug_max(void) |
| { |
| return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| /* Virtual Processor Home Node (VPHN) support */ |
| #ifdef CONFIG_PPC_SPLPAR |
| |
| #include "vphn.h" |
| |
| struct topology_update_data { |
| struct topology_update_data *next; |
| unsigned int cpu; |
| int old_nid; |
| int new_nid; |
| }; |
| |
| static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; |
| static cpumask_t cpu_associativity_changes_mask; |
| static int vphn_enabled; |
| static int prrn_enabled; |
| static void reset_topology_timer(void); |
| |
| /* |
| * Store the current values of the associativity change counters in the |
| * hypervisor. |
| */ |
| static void setup_cpu_associativity_change_counters(void) |
| { |
| int cpu; |
| |
| /* The VPHN feature supports a maximum of 8 reference points */ |
| BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); |
| |
| for_each_possible_cpu(cpu) { |
| int i; |
| u8 *counts = vphn_cpu_change_counts[cpu]; |
| volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) |
| counts[i] = hypervisor_counts[i]; |
| } |
| } |
| |
| /* |
| * The hypervisor maintains a set of 8 associativity change counters in |
| * the VPA of each cpu that correspond to the associativity levels in the |
| * ibm,associativity-reference-points property. When an associativity |
| * level changes, the corresponding counter is incremented. |
| * |
| * Set a bit in cpu_associativity_changes_mask for each cpu whose home |
| * node associativity levels have changed. |
| * |
| * Returns the number of cpus with unhandled associativity changes. |
| */ |
| static int update_cpu_associativity_changes_mask(void) |
| { |
| int cpu; |
| cpumask_t *changes = &cpu_associativity_changes_mask; |
| |
| for_each_possible_cpu(cpu) { |
| int i, changed = 0; |
| u8 *counts = vphn_cpu_change_counts[cpu]; |
| volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| if (hypervisor_counts[i] != counts[i]) { |
| counts[i] = hypervisor_counts[i]; |
| changed = 1; |
| } |
| } |
| if (changed) { |
| cpumask_or(changes, changes, cpu_sibling_mask(cpu)); |
| cpu = cpu_last_thread_sibling(cpu); |
| } |
| } |
| |
| return cpumask_weight(changes); |
| } |
| |
| /* |
| * Retrieve the new associativity information for a virtual processor's |
| * home node. |
| */ |
| static long hcall_vphn(unsigned long cpu, __be32 *associativity) |
| { |
| long rc; |
| long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; |
| u64 flags = 1; |
| int hwcpu = get_hard_smp_processor_id(cpu); |
| |
| rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); |
| vphn_unpack_associativity(retbuf, associativity); |
| |
| return rc; |
| } |
| |
| static long vphn_get_associativity(unsigned long cpu, |
| __be32 *associativity) |
| { |
| long rc; |
| |
| rc = hcall_vphn(cpu, associativity); |
| |
| switch (rc) { |
| case H_FUNCTION: |
| printk(KERN_INFO |
| "VPHN is not supported. Disabling polling...\n"); |
| stop_topology_update(); |
| break; |
| case H_HARDWARE: |
| printk(KERN_ERR |
| "hcall_vphn() experienced a hardware fault " |
| "preventing VPHN. Disabling polling...\n"); |
| stop_topology_update(); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Update the CPU maps and sysfs entries for a single CPU when its NUMA |
| * characteristics change. This function doesn't perform any locking and is |
| * only safe to call from stop_machine(). |
| */ |
| static int update_cpu_topology(void *data) |
| { |
| struct topology_update_data *update; |
| unsigned long cpu; |
| |
| if (!data) |
| return -EINVAL; |
| |
| cpu = smp_processor_id(); |
| |
| for (update = data; update; update = update->next) { |
| int new_nid = update->new_nid; |
| if (cpu != update->cpu) |
| continue; |
| |
| unmap_cpu_from_node(cpu); |
| map_cpu_to_node(cpu, new_nid); |
| set_cpu_numa_node(cpu, new_nid); |
| set_cpu_numa_mem(cpu, local_memory_node(new_nid)); |
| vdso_getcpu_init(); |
| } |
| |
| return 0; |
| } |
| |
| static int update_lookup_table(void *data) |
| { |
| struct topology_update_data *update; |
| |
| if (!data) |
| return -EINVAL; |
| |
| /* |
| * Upon topology update, the numa-cpu lookup table needs to be updated |
| * for all threads in the core, including offline CPUs, to ensure that |
| * future hotplug operations respect the cpu-to-node associativity |
| * properly. |
| */ |
| for (update = data; update; update = update->next) { |
| int nid, base, j; |
| |
| nid = update->new_nid; |
| base = cpu_first_thread_sibling(update->cpu); |
| |
| for (j = 0; j < threads_per_core; j++) { |
| update_numa_cpu_lookup_table(base + j, nid); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Update the node maps and sysfs entries for each cpu whose home node |
| * has changed. Returns 1 when the topology has changed, and 0 otherwise. |
| */ |
| int arch_update_cpu_topology(void) |
| { |
| unsigned int cpu, sibling, changed = 0; |
| struct topology_update_data *updates, *ud; |
| __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
| cpumask_t updated_cpus; |
| struct device *dev; |
| int weight, new_nid, i = 0; |
| |
| if (!prrn_enabled && !vphn_enabled) |
| return 0; |
| |
| weight = cpumask_weight(&cpu_associativity_changes_mask); |
| if (!weight) |
| return 0; |
| |
| updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); |
| if (!updates) |
| return 0; |
| |
| cpumask_clear(&updated_cpus); |
| |
| for_each_cpu(cpu, &cpu_associativity_changes_mask) { |
| /* |
| * If siblings aren't flagged for changes, updates list |
| * will be too short. Skip on this update and set for next |
| * update. |
| */ |
| if (!cpumask_subset(cpu_sibling_mask(cpu), |
| &cpu_associativity_changes_mask)) { |
| pr_info("Sibling bits not set for associativity " |
| "change, cpu%d\n", cpu); |
| cpumask_or(&cpu_associativity_changes_mask, |
| &cpu_associativity_changes_mask, |
| cpu_sibling_mask(cpu)); |
| cpu = cpu_last_thread_sibling(cpu); |
| continue; |
| } |
| |
| /* Use associativity from first thread for all siblings */ |
| vphn_get_associativity(cpu, associativity); |
| new_nid = associativity_to_nid(associativity); |
| if (new_nid < 0 || !node_online(new_nid)) |
| new_nid = first_online_node; |
| |
| if (new_nid == numa_cpu_lookup_table[cpu]) { |
| cpumask_andnot(&cpu_associativity_changes_mask, |
| &cpu_associativity_changes_mask, |
| cpu_sibling_mask(cpu)); |
| cpu = cpu_last_thread_sibling(cpu); |
| continue; |
| } |
| |
| for_each_cpu(sibling, cpu_sibling_mask(cpu)) { |
| ud = &updates[i++]; |
| ud->cpu = sibling; |
| ud->new_nid = new_nid; |
| ud->old_nid = numa_cpu_lookup_table[sibling]; |
| cpumask_set_cpu(sibling, &updated_cpus); |
| if (i < weight) |
| ud->next = &updates[i]; |
| } |
| cpu = cpu_last_thread_sibling(cpu); |
| } |
| |
| pr_debug("Topology update for the following CPUs:\n"); |
| if (cpumask_weight(&updated_cpus)) { |
| for (ud = &updates[0]; ud; ud = ud->next) { |
| pr_debug("cpu %d moving from node %d " |
| "to %d\n", ud->cpu, |
| ud->old_nid, ud->new_nid); |
| } |
| } |
| |
| /* |
| * In cases where we have nothing to update (because the updates list |
| * is too short or because the new topology is same as the old one), |
| * skip invoking update_cpu_topology() via stop-machine(). This is |
| * necessary (and not just a fast-path optimization) since stop-machine |
| * can end up electing a random CPU to run update_cpu_topology(), and |
| * thus trick us into setting up incorrect cpu-node mappings (since |
| * 'updates' is kzalloc()'ed). |
| * |
| * And for the similar reason, we will skip all the following updating. |
| */ |
| if (!cpumask_weight(&updated_cpus)) |
| goto out; |
| |
| stop_machine(update_cpu_topology, &updates[0], &updated_cpus); |
| |
| /* |
| * Update the numa-cpu lookup table with the new mappings, even for |
| * offline CPUs. It is best to perform this update from the stop- |
| * machine context. |
| */ |
| stop_machine(update_lookup_table, &updates[0], |
| cpumask_of(raw_smp_processor_id())); |
| |
| for (ud = &updates[0]; ud; ud = ud->next) { |
| unregister_cpu_under_node(ud->cpu, ud->old_nid); |
| register_cpu_under_node(ud->cpu, ud->new_nid); |
| |
| dev = get_cpu_device(ud->cpu); |
| if (dev) |
| kobject_uevent(&dev->kobj, KOBJ_CHANGE); |
| cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); |
| changed = 1; |
| } |
| |
| out: |
| kfree(updates); |
| return changed; |
| } |
| |
| static void topology_work_fn(struct work_struct *work) |
| { |
| rebuild_sched_domains(); |
| } |
| static DECLARE_WORK(topology_work, topology_work_fn); |
| |
| static void topology_schedule_update(void) |
| { |
| schedule_work(&topology_work); |
| } |
| |
| static void topology_timer_fn(unsigned long ignored) |
| { |
| if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) |
| topology_schedule_update(); |
| else if (vphn_enabled) { |
| if (update_cpu_associativity_changes_mask() > 0) |
| topology_schedule_update(); |
| reset_topology_timer(); |
| } |
| } |
| static struct timer_list topology_timer = |
| TIMER_INITIALIZER(topology_timer_fn, 0, 0); |
| |
| static void reset_topology_timer(void) |
| { |
| topology_timer.data = 0; |
| topology_timer.expires = jiffies + 60 * HZ; |
| mod_timer(&topology_timer, topology_timer.expires); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void stage_topology_update(int core_id) |
| { |
| cpumask_or(&cpu_associativity_changes_mask, |
| &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); |
| reset_topology_timer(); |
| } |
| |
| static int dt_update_callback(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct of_reconfig_data *update = data; |
| int rc = NOTIFY_DONE; |
| |
| switch (action) { |
| case OF_RECONFIG_UPDATE_PROPERTY: |
| if (!of_prop_cmp(update->dn->type, "cpu") && |
| !of_prop_cmp(update->prop->name, "ibm,associativity")) { |
| u32 core_id; |
| of_property_read_u32(update->dn, "reg", &core_id); |
| stage_topology_update(core_id); |
| rc = NOTIFY_OK; |
| } |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static struct notifier_block dt_update_nb = { |
| .notifier_call = dt_update_callback, |
| }; |
| |
| #endif |
| |
| /* |
| * Start polling for associativity changes. |
| */ |
| int start_topology_update(void) |
| { |
| int rc = 0; |
| |
| if (firmware_has_feature(FW_FEATURE_PRRN)) { |
| if (!prrn_enabled) { |
| prrn_enabled = 1; |
| vphn_enabled = 0; |
| #ifdef CONFIG_SMP |
| rc = of_reconfig_notifier_register(&dt_update_nb); |
| #endif |
| } |
| } else if (firmware_has_feature(FW_FEATURE_VPHN) && |
| lppaca_shared_proc(get_lppaca())) { |
| if (!vphn_enabled) { |
| prrn_enabled = 0; |
| vphn_enabled = 1; |
| setup_cpu_associativity_change_counters(); |
| init_timer_deferrable(&topology_timer); |
| reset_topology_timer(); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Disable polling for VPHN associativity changes. |
| */ |
| int stop_topology_update(void) |
| { |
| int rc = 0; |
| |
| if (prrn_enabled) { |
| prrn_enabled = 0; |
| #ifdef CONFIG_SMP |
| rc = of_reconfig_notifier_unregister(&dt_update_nb); |
| #endif |
| } else if (vphn_enabled) { |
| vphn_enabled = 0; |
| rc = del_timer_sync(&topology_timer); |
| } |
| |
| return rc; |
| } |
| |
| int prrn_is_enabled(void) |
| { |
| return prrn_enabled; |
| } |
| |
| static int topology_read(struct seq_file *file, void *v) |
| { |
| if (vphn_enabled || prrn_enabled) |
| seq_puts(file, "on\n"); |
| else |
| seq_puts(file, "off\n"); |
| |
| return 0; |
| } |
| |
| static int topology_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, topology_read, NULL); |
| } |
| |
| static ssize_t topology_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *off) |
| { |
| char kbuf[4]; /* "on" or "off" plus null. */ |
| int read_len; |
| |
| read_len = count < 3 ? count : 3; |
| if (copy_from_user(kbuf, buf, read_len)) |
| return -EINVAL; |
| |
| kbuf[read_len] = '\0'; |
| |
| if (!strncmp(kbuf, "on", 2)) |
| start_topology_update(); |
| else if (!strncmp(kbuf, "off", 3)) |
| stop_topology_update(); |
| else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static const struct file_operations topology_ops = { |
| .read = seq_read, |
| .write = topology_write, |
| .open = topology_open, |
| .release = single_release |
| }; |
| |
| static int topology_update_init(void) |
| { |
| /* Do not poll for changes if disabled at boot */ |
| if (topology_updates_enabled) |
| start_topology_update(); |
| |
| if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| device_initcall(topology_update_init); |
| #endif /* CONFIG_PPC_SPLPAR */ |