| /* |
| * EDMA3 support for DaVinci |
| * |
| * Copyright (C) 2006-2009 Texas Instruments. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/edma.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/of_irq.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <linux/platform_data/edma.h> |
| |
| /* Offsets matching "struct edmacc_param" */ |
| #define PARM_OPT 0x00 |
| #define PARM_SRC 0x04 |
| #define PARM_A_B_CNT 0x08 |
| #define PARM_DST 0x0c |
| #define PARM_SRC_DST_BIDX 0x10 |
| #define PARM_LINK_BCNTRLD 0x14 |
| #define PARM_SRC_DST_CIDX 0x18 |
| #define PARM_CCNT 0x1c |
| |
| #define PARM_SIZE 0x20 |
| |
| /* Offsets for EDMA CC global channel registers and their shadows */ |
| #define SH_ER 0x00 /* 64 bits */ |
| #define SH_ECR 0x08 /* 64 bits */ |
| #define SH_ESR 0x10 /* 64 bits */ |
| #define SH_CER 0x18 /* 64 bits */ |
| #define SH_EER 0x20 /* 64 bits */ |
| #define SH_EECR 0x28 /* 64 bits */ |
| #define SH_EESR 0x30 /* 64 bits */ |
| #define SH_SER 0x38 /* 64 bits */ |
| #define SH_SECR 0x40 /* 64 bits */ |
| #define SH_IER 0x50 /* 64 bits */ |
| #define SH_IECR 0x58 /* 64 bits */ |
| #define SH_IESR 0x60 /* 64 bits */ |
| #define SH_IPR 0x68 /* 64 bits */ |
| #define SH_ICR 0x70 /* 64 bits */ |
| #define SH_IEVAL 0x78 |
| #define SH_QER 0x80 |
| #define SH_QEER 0x84 |
| #define SH_QEECR 0x88 |
| #define SH_QEESR 0x8c |
| #define SH_QSER 0x90 |
| #define SH_QSECR 0x94 |
| #define SH_SIZE 0x200 |
| |
| /* Offsets for EDMA CC global registers */ |
| #define EDMA_REV 0x0000 |
| #define EDMA_CCCFG 0x0004 |
| #define EDMA_QCHMAP 0x0200 /* 8 registers */ |
| #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ |
| #define EDMA_QDMAQNUM 0x0260 |
| #define EDMA_QUETCMAP 0x0280 |
| #define EDMA_QUEPRI 0x0284 |
| #define EDMA_EMR 0x0300 /* 64 bits */ |
| #define EDMA_EMCR 0x0308 /* 64 bits */ |
| #define EDMA_QEMR 0x0310 |
| #define EDMA_QEMCR 0x0314 |
| #define EDMA_CCERR 0x0318 |
| #define EDMA_CCERRCLR 0x031c |
| #define EDMA_EEVAL 0x0320 |
| #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ |
| #define EDMA_QRAE 0x0380 /* 4 registers */ |
| #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ |
| #define EDMA_QSTAT 0x0600 /* 2 registers */ |
| #define EDMA_QWMTHRA 0x0620 |
| #define EDMA_QWMTHRB 0x0624 |
| #define EDMA_CCSTAT 0x0640 |
| |
| #define EDMA_M 0x1000 /* global channel registers */ |
| #define EDMA_ECR 0x1008 |
| #define EDMA_ECRH 0x100C |
| #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */ |
| #define EDMA_PARM 0x4000 /* 128 param entries */ |
| |
| #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) |
| |
| #define EDMA_DCHMAP 0x0100 /* 64 registers */ |
| |
| /* CCCFG register */ |
| #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ |
| #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ |
| #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ |
| #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ |
| #define CHMAP_EXIST BIT(24) |
| |
| #define EDMA_MAX_DMACH 64 |
| #define EDMA_MAX_PARAMENTRY 512 |
| |
| /*****************************************************************************/ |
| |
| static void __iomem *edmacc_regs_base[EDMA_MAX_CC]; |
| |
| static inline unsigned int edma_read(unsigned ctlr, int offset) |
| { |
| return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset); |
| } |
| |
| static inline void edma_write(unsigned ctlr, int offset, int val) |
| { |
| __raw_writel(val, edmacc_regs_base[ctlr] + offset); |
| } |
| static inline void edma_modify(unsigned ctlr, int offset, unsigned and, |
| unsigned or) |
| { |
| unsigned val = edma_read(ctlr, offset); |
| val &= and; |
| val |= or; |
| edma_write(ctlr, offset, val); |
| } |
| static inline void edma_and(unsigned ctlr, int offset, unsigned and) |
| { |
| unsigned val = edma_read(ctlr, offset); |
| val &= and; |
| edma_write(ctlr, offset, val); |
| } |
| static inline void edma_or(unsigned ctlr, int offset, unsigned or) |
| { |
| unsigned val = edma_read(ctlr, offset); |
| val |= or; |
| edma_write(ctlr, offset, val); |
| } |
| static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i) |
| { |
| return edma_read(ctlr, offset + (i << 2)); |
| } |
| static inline void edma_write_array(unsigned ctlr, int offset, int i, |
| unsigned val) |
| { |
| edma_write(ctlr, offset + (i << 2), val); |
| } |
| static inline void edma_modify_array(unsigned ctlr, int offset, int i, |
| unsigned and, unsigned or) |
| { |
| edma_modify(ctlr, offset + (i << 2), and, or); |
| } |
| static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or) |
| { |
| edma_or(ctlr, offset + (i << 2), or); |
| } |
| static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j, |
| unsigned or) |
| { |
| edma_or(ctlr, offset + ((i*2 + j) << 2), or); |
| } |
| static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j, |
| unsigned val) |
| { |
| edma_write(ctlr, offset + ((i*2 + j) << 2), val); |
| } |
| static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset) |
| { |
| return edma_read(ctlr, EDMA_SHADOW0 + offset); |
| } |
| static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset, |
| int i) |
| { |
| return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2)); |
| } |
| static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val) |
| { |
| edma_write(ctlr, EDMA_SHADOW0 + offset, val); |
| } |
| static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i, |
| unsigned val) |
| { |
| edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val); |
| } |
| static inline unsigned int edma_parm_read(unsigned ctlr, int offset, |
| int param_no) |
| { |
| return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5)); |
| } |
| static inline void edma_parm_write(unsigned ctlr, int offset, int param_no, |
| unsigned val) |
| { |
| edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val); |
| } |
| static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no, |
| unsigned and, unsigned or) |
| { |
| edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or); |
| } |
| static inline void edma_parm_and(unsigned ctlr, int offset, int param_no, |
| unsigned and) |
| { |
| edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and); |
| } |
| static inline void edma_parm_or(unsigned ctlr, int offset, int param_no, |
| unsigned or) |
| { |
| edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or); |
| } |
| |
| static inline void set_bits(int offset, int len, unsigned long *p) |
| { |
| for (; len > 0; len--) |
| set_bit(offset + (len - 1), p); |
| } |
| |
| static inline void clear_bits(int offset, int len, unsigned long *p) |
| { |
| for (; len > 0; len--) |
| clear_bit(offset + (len - 1), p); |
| } |
| |
| /*****************************************************************************/ |
| |
| /* actual number of DMA channels and slots on this silicon */ |
| struct edma { |
| /* how many dma resources of each type */ |
| unsigned num_channels; |
| unsigned num_region; |
| unsigned num_slots; |
| unsigned num_tc; |
| enum dma_event_q default_queue; |
| |
| /* list of channels with no even trigger; terminated by "-1" */ |
| const s8 *noevent; |
| |
| /* The edma_inuse bit for each PaRAM slot is clear unless the |
| * channel is in use ... by ARM or DSP, for QDMA, or whatever. |
| */ |
| DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY); |
| |
| /* The edma_unused bit for each channel is clear unless |
| * it is not being used on this platform. It uses a bit |
| * of SOC-specific initialization code. |
| */ |
| DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH); |
| |
| unsigned irq_res_start; |
| unsigned irq_res_end; |
| |
| struct dma_interrupt_data { |
| void (*callback)(unsigned channel, unsigned short ch_status, |
| void *data); |
| void *data; |
| } intr_data[EDMA_MAX_DMACH]; |
| }; |
| |
| static struct edma *edma_cc[EDMA_MAX_CC]; |
| static int arch_num_cc; |
| |
| /* dummy param set used to (re)initialize parameter RAM slots */ |
| static const struct edmacc_param dummy_paramset = { |
| .link_bcntrld = 0xffff, |
| .ccnt = 1, |
| }; |
| |
| static const struct of_device_id edma_of_ids[] = { |
| { .compatible = "ti,edma3", }, |
| {} |
| }; |
| |
| /*****************************************************************************/ |
| |
| static void map_dmach_queue(unsigned ctlr, unsigned ch_no, |
| enum dma_event_q queue_no) |
| { |
| int bit = (ch_no & 0x7) * 4; |
| |
| /* default to low priority queue */ |
| if (queue_no == EVENTQ_DEFAULT) |
| queue_no = edma_cc[ctlr]->default_queue; |
| |
| queue_no &= 7; |
| edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3), |
| ~(0x7 << bit), queue_no << bit); |
| } |
| |
| static void __init assign_priority_to_queue(unsigned ctlr, int queue_no, |
| int priority) |
| { |
| int bit = queue_no * 4; |
| edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit), |
| ((priority & 0x7) << bit)); |
| } |
| |
| /** |
| * map_dmach_param - Maps channel number to param entry number |
| * |
| * This maps the dma channel number to param entry numberter. In |
| * other words using the DMA channel mapping registers a param entry |
| * can be mapped to any channel |
| * |
| * Callers are responsible for ensuring the channel mapping logic is |
| * included in that particular EDMA variant (Eg : dm646x) |
| * |
| */ |
| static void __init map_dmach_param(unsigned ctlr) |
| { |
| int i; |
| for (i = 0; i < EDMA_MAX_DMACH; i++) |
| edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5)); |
| } |
| |
| static inline void |
| setup_dma_interrupt(unsigned lch, |
| void (*callback)(unsigned channel, u16 ch_status, void *data), |
| void *data) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(lch); |
| lch = EDMA_CHAN_SLOT(lch); |
| |
| if (!callback) |
| edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5, |
| BIT(lch & 0x1f)); |
| |
| edma_cc[ctlr]->intr_data[lch].callback = callback; |
| edma_cc[ctlr]->intr_data[lch].data = data; |
| |
| if (callback) { |
| edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5, |
| BIT(lch & 0x1f)); |
| edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5, |
| BIT(lch & 0x1f)); |
| } |
| } |
| |
| static int irq2ctlr(int irq) |
| { |
| if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end) |
| return 0; |
| else if (irq >= edma_cc[1]->irq_res_start && |
| irq <= edma_cc[1]->irq_res_end) |
| return 1; |
| |
| return -1; |
| } |
| |
| /****************************************************************************** |
| * |
| * DMA interrupt handler |
| * |
| *****************************************************************************/ |
| static irqreturn_t dma_irq_handler(int irq, void *data) |
| { |
| int ctlr; |
| u32 sh_ier; |
| u32 sh_ipr; |
| u32 bank; |
| |
| ctlr = irq2ctlr(irq); |
| if (ctlr < 0) |
| return IRQ_NONE; |
| |
| dev_dbg(data, "dma_irq_handler\n"); |
| |
| sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0); |
| if (!sh_ipr) { |
| sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1); |
| if (!sh_ipr) |
| return IRQ_NONE; |
| sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1); |
| bank = 1; |
| } else { |
| sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0); |
| bank = 0; |
| } |
| |
| do { |
| u32 slot; |
| u32 channel; |
| |
| dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr); |
| |
| slot = __ffs(sh_ipr); |
| sh_ipr &= ~(BIT(slot)); |
| |
| if (sh_ier & BIT(slot)) { |
| channel = (bank << 5) | slot; |
| /* Clear the corresponding IPR bits */ |
| edma_shadow0_write_array(ctlr, SH_ICR, bank, |
| BIT(slot)); |
| if (edma_cc[ctlr]->intr_data[channel].callback) |
| edma_cc[ctlr]->intr_data[channel].callback( |
| channel, EDMA_DMA_COMPLETE, |
| edma_cc[ctlr]->intr_data[channel].data); |
| } |
| } while (sh_ipr); |
| |
| edma_shadow0_write(ctlr, SH_IEVAL, 1); |
| return IRQ_HANDLED; |
| } |
| |
| /****************************************************************************** |
| * |
| * DMA error interrupt handler |
| * |
| *****************************************************************************/ |
| static irqreturn_t dma_ccerr_handler(int irq, void *data) |
| { |
| int i; |
| int ctlr; |
| unsigned int cnt = 0; |
| |
| ctlr = irq2ctlr(irq); |
| if (ctlr < 0) |
| return IRQ_NONE; |
| |
| dev_dbg(data, "dma_ccerr_handler\n"); |
| |
| if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && |
| (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && |
| (edma_read(ctlr, EDMA_QEMR) == 0) && |
| (edma_read(ctlr, EDMA_CCERR) == 0)) |
| return IRQ_NONE; |
| |
| while (1) { |
| int j = -1; |
| if (edma_read_array(ctlr, EDMA_EMR, 0)) |
| j = 0; |
| else if (edma_read_array(ctlr, EDMA_EMR, 1)) |
| j = 1; |
| if (j >= 0) { |
| dev_dbg(data, "EMR%d %08x\n", j, |
| edma_read_array(ctlr, EDMA_EMR, j)); |
| for (i = 0; i < 32; i++) { |
| int k = (j << 5) + i; |
| if (edma_read_array(ctlr, EDMA_EMR, j) & |
| BIT(i)) { |
| /* Clear the corresponding EMR bits */ |
| edma_write_array(ctlr, EDMA_EMCR, j, |
| BIT(i)); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ctlr, SH_SECR, |
| j, BIT(i)); |
| if (edma_cc[ctlr]->intr_data[k]. |
| callback) { |
| edma_cc[ctlr]->intr_data[k]. |
| callback(k, |
| EDMA_DMA_CC_ERROR, |
| edma_cc[ctlr]->intr_data |
| [k].data); |
| } |
| } |
| } |
| } else if (edma_read(ctlr, EDMA_QEMR)) { |
| dev_dbg(data, "QEMR %02x\n", |
| edma_read(ctlr, EDMA_QEMR)); |
| for (i = 0; i < 8; i++) { |
| if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) { |
| /* Clear the corresponding IPR bits */ |
| edma_write(ctlr, EDMA_QEMCR, BIT(i)); |
| edma_shadow0_write(ctlr, SH_QSECR, |
| BIT(i)); |
| |
| /* NOTE: not reported!! */ |
| } |
| } |
| } else if (edma_read(ctlr, EDMA_CCERR)) { |
| dev_dbg(data, "CCERR %08x\n", |
| edma_read(ctlr, EDMA_CCERR)); |
| /* FIXME: CCERR.BIT(16) ignored! much better |
| * to just write CCERRCLR with CCERR value... |
| */ |
| for (i = 0; i < 8; i++) { |
| if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) { |
| /* Clear the corresponding IPR bits */ |
| edma_write(ctlr, EDMA_CCERRCLR, BIT(i)); |
| |
| /* NOTE: not reported!! */ |
| } |
| } |
| } |
| if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && |
| (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && |
| (edma_read(ctlr, EDMA_QEMR) == 0) && |
| (edma_read(ctlr, EDMA_CCERR) == 0)) |
| break; |
| cnt++; |
| if (cnt > 10) |
| break; |
| } |
| edma_write(ctlr, EDMA_EEVAL, 1); |
| return IRQ_HANDLED; |
| } |
| |
| static int reserve_contiguous_slots(int ctlr, unsigned int id, |
| unsigned int num_slots, |
| unsigned int start_slot) |
| { |
| int i, j; |
| unsigned int count = num_slots; |
| int stop_slot = start_slot; |
| DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY); |
| |
| for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) { |
| j = EDMA_CHAN_SLOT(i); |
| if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) { |
| /* Record our current beginning slot */ |
| if (count == num_slots) |
| stop_slot = i; |
| |
| count--; |
| set_bit(j, tmp_inuse); |
| |
| if (count == 0) |
| break; |
| } else { |
| clear_bit(j, tmp_inuse); |
| |
| if (id == EDMA_CONT_PARAMS_FIXED_EXACT) { |
| stop_slot = i; |
| break; |
| } else { |
| count = num_slots; |
| } |
| } |
| } |
| |
| /* |
| * We have to clear any bits that we set |
| * if we run out parameter RAM slots, i.e we do find a set |
| * of contiguous parameter RAM slots but do not find the exact number |
| * requested as we may reach the total number of parameter RAM slots |
| */ |
| if (i == edma_cc[ctlr]->num_slots) |
| stop_slot = i; |
| |
| j = start_slot; |
| for_each_set_bit_from(j, tmp_inuse, stop_slot) |
| clear_bit(j, edma_cc[ctlr]->edma_inuse); |
| |
| if (count) |
| return -EBUSY; |
| |
| for (j = i - num_slots + 1; j <= i; ++j) |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j), |
| &dummy_paramset, PARM_SIZE); |
| |
| return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1); |
| } |
| |
| static int prepare_unused_channel_list(struct device *dev, void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| int i, count, ctlr; |
| struct of_phandle_args dma_spec; |
| |
| if (dev->of_node) { |
| count = of_property_count_strings(dev->of_node, "dma-names"); |
| if (count < 0) |
| return 0; |
| for (i = 0; i < count; i++) { |
| if (of_parse_phandle_with_args(dev->of_node, "dmas", |
| "#dma-cells", i, |
| &dma_spec)) |
| continue; |
| |
| if (!of_match_node(edma_of_ids, dma_spec.np)) { |
| of_node_put(dma_spec.np); |
| continue; |
| } |
| |
| clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]), |
| edma_cc[0]->edma_unused); |
| of_node_put(dma_spec.np); |
| } |
| return 0; |
| } |
| |
| /* For non-OF case */ |
| for (i = 0; i < pdev->num_resources; i++) { |
| if ((pdev->resource[i].flags & IORESOURCE_DMA) && |
| (int)pdev->resource[i].start >= 0) { |
| ctlr = EDMA_CTLR(pdev->resource[i].start); |
| clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start), |
| edma_cc[ctlr]->edma_unused); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /*-----------------------------------------------------------------------*/ |
| |
| static bool unused_chan_list_done; |
| |
| /* Resource alloc/free: dma channels, parameter RAM slots */ |
| |
| /** |
| * edma_alloc_channel - allocate DMA channel and paired parameter RAM |
| * @channel: specific channel to allocate; negative for "any unmapped channel" |
| * @callback: optional; to be issued on DMA completion or errors |
| * @data: passed to callback |
| * @eventq_no: an EVENTQ_* constant, used to choose which Transfer |
| * Controller (TC) executes requests using this channel. Use |
| * EVENTQ_DEFAULT unless you really need a high priority queue. |
| * |
| * This allocates a DMA channel and its associated parameter RAM slot. |
| * The parameter RAM is initialized to hold a dummy transfer. |
| * |
| * Normal use is to pass a specific channel number as @channel, to make |
| * use of hardware events mapped to that channel. When the channel will |
| * be used only for software triggering or event chaining, channels not |
| * mapped to hardware events (or mapped to unused events) are preferable. |
| * |
| * DMA transfers start from a channel using edma_start(), or by |
| * chaining. When the transfer described in that channel's parameter RAM |
| * slot completes, that slot's data may be reloaded through a link. |
| * |
| * DMA errors are only reported to the @callback associated with the |
| * channel driving that transfer, but transfer completion callbacks can |
| * be sent to another channel under control of the TCC field in |
| * the option word of the transfer's parameter RAM set. Drivers must not |
| * use DMA transfer completion callbacks for channels they did not allocate. |
| * (The same applies to TCC codes used in transfer chaining.) |
| * |
| * Returns the number of the channel, else negative errno. |
| */ |
| int edma_alloc_channel(int channel, |
| void (*callback)(unsigned channel, u16 ch_status, void *data), |
| void *data, |
| enum dma_event_q eventq_no) |
| { |
| unsigned i, done = 0, ctlr = 0; |
| int ret = 0; |
| |
| if (!unused_chan_list_done) { |
| /* |
| * Scan all the platform devices to find out the EDMA channels |
| * used and clear them in the unused list, making the rest |
| * available for ARM usage. |
| */ |
| ret = bus_for_each_dev(&platform_bus_type, NULL, NULL, |
| prepare_unused_channel_list); |
| if (ret < 0) |
| return ret; |
| |
| unused_chan_list_done = true; |
| } |
| |
| if (channel >= 0) { |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| } |
| |
| if (channel < 0) { |
| for (i = 0; i < arch_num_cc; i++) { |
| channel = 0; |
| for (;;) { |
| channel = find_next_bit(edma_cc[i]->edma_unused, |
| edma_cc[i]->num_channels, |
| channel); |
| if (channel == edma_cc[i]->num_channels) |
| break; |
| if (!test_and_set_bit(channel, |
| edma_cc[i]->edma_inuse)) { |
| done = 1; |
| ctlr = i; |
| break; |
| } |
| channel++; |
| } |
| if (done) |
| break; |
| } |
| if (!done) |
| return -ENOMEM; |
| } else if (channel >= edma_cc[ctlr]->num_channels) { |
| return -EINVAL; |
| } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) { |
| return -EBUSY; |
| } |
| |
| /* ensure access through shadow region 0 */ |
| edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); |
| |
| /* ensure no events are pending */ |
| edma_stop(EDMA_CTLR_CHAN(ctlr, channel)); |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), |
| &dummy_paramset, PARM_SIZE); |
| |
| if (callback) |
| setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel), |
| callback, data); |
| |
| map_dmach_queue(ctlr, channel, eventq_no); |
| |
| return EDMA_CTLR_CHAN(ctlr, channel); |
| } |
| EXPORT_SYMBOL(edma_alloc_channel); |
| |
| |
| /** |
| * edma_free_channel - deallocate DMA channel |
| * @channel: dma channel returned from edma_alloc_channel() |
| * |
| * This deallocates the DMA channel and associated parameter RAM slot |
| * allocated by edma_alloc_channel(). |
| * |
| * Callers are responsible for ensuring the channel is inactive, and |
| * will not be reactivated by linking, chaining, or software calls to |
| * edma_start(). |
| */ |
| void edma_free_channel(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel >= edma_cc[ctlr]->num_channels) |
| return; |
| |
| setup_dma_interrupt(channel, NULL, NULL); |
| /* REVISIT should probably take out of shadow region 0 */ |
| |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), |
| &dummy_paramset, PARM_SIZE); |
| clear_bit(channel, edma_cc[ctlr]->edma_inuse); |
| } |
| EXPORT_SYMBOL(edma_free_channel); |
| |
| /** |
| * edma_alloc_slot - allocate DMA parameter RAM |
| * @slot: specific slot to allocate; negative for "any unused slot" |
| * |
| * This allocates a parameter RAM slot, initializing it to hold a |
| * dummy transfer. Slots allocated using this routine have not been |
| * mapped to a hardware DMA channel, and will normally be used by |
| * linking to them from a slot associated with a DMA channel. |
| * |
| * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific |
| * slots may be allocated on behalf of DSP firmware. |
| * |
| * Returns the number of the slot, else negative errno. |
| */ |
| int edma_alloc_slot(unsigned ctlr, int slot) |
| { |
| if (!edma_cc[ctlr]) |
| return -EINVAL; |
| |
| if (slot >= 0) |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < 0) { |
| slot = edma_cc[ctlr]->num_channels; |
| for (;;) { |
| slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse, |
| edma_cc[ctlr]->num_slots, slot); |
| if (slot == edma_cc[ctlr]->num_slots) |
| return -ENOMEM; |
| if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) |
| break; |
| } |
| } else if (slot < edma_cc[ctlr]->num_channels || |
| slot >= edma_cc[ctlr]->num_slots) { |
| return -EINVAL; |
| } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) { |
| return -EBUSY; |
| } |
| |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), |
| &dummy_paramset, PARM_SIZE); |
| |
| return EDMA_CTLR_CHAN(ctlr, slot); |
| } |
| EXPORT_SYMBOL(edma_alloc_slot); |
| |
| /** |
| * edma_free_slot - deallocate DMA parameter RAM |
| * @slot: parameter RAM slot returned from edma_alloc_slot() |
| * |
| * This deallocates the parameter RAM slot allocated by edma_alloc_slot(). |
| * Callers are responsible for ensuring the slot is inactive, and will |
| * not be activated. |
| */ |
| void edma_free_slot(unsigned slot) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_channels || |
| slot >= edma_cc[ctlr]->num_slots) |
| return; |
| |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), |
| &dummy_paramset, PARM_SIZE); |
| clear_bit(slot, edma_cc[ctlr]->edma_inuse); |
| } |
| EXPORT_SYMBOL(edma_free_slot); |
| |
| |
| /** |
| * edma_alloc_cont_slots- alloc contiguous parameter RAM slots |
| * The API will return the starting point of a set of |
| * contiguous parameter RAM slots that have been requested |
| * |
| * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT |
| * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT |
| * @count: number of contiguous Paramter RAM slots |
| * @slot - the start value of Parameter RAM slot that should be passed if id |
| * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT |
| * |
| * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of |
| * contiguous Parameter RAM slots from parameter RAM 64 in the case of |
| * DaVinci SOCs and 32 in the case of DA8xx SOCs. |
| * |
| * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a |
| * set of contiguous parameter RAM slots from the "slot" that is passed as an |
| * argument to the API. |
| * |
| * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries |
| * starts looking for a set of contiguous parameter RAMs from the "slot" |
| * that is passed as an argument to the API. On failure the API will try to |
| * find a set of contiguous Parameter RAM slots from the remaining Parameter |
| * RAM slots |
| */ |
| int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count) |
| { |
| /* |
| * The start slot requested should be greater than |
| * the number of channels and lesser than the total number |
| * of slots |
| */ |
| if ((id != EDMA_CONT_PARAMS_ANY) && |
| (slot < edma_cc[ctlr]->num_channels || |
| slot >= edma_cc[ctlr]->num_slots)) |
| return -EINVAL; |
| |
| /* |
| * The number of parameter RAM slots requested cannot be less than 1 |
| * and cannot be more than the number of slots minus the number of |
| * channels |
| */ |
| if (count < 1 || count > |
| (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels)) |
| return -EINVAL; |
| |
| switch (id) { |
| case EDMA_CONT_PARAMS_ANY: |
| return reserve_contiguous_slots(ctlr, id, count, |
| edma_cc[ctlr]->num_channels); |
| case EDMA_CONT_PARAMS_FIXED_EXACT: |
| case EDMA_CONT_PARAMS_FIXED_NOT_EXACT: |
| return reserve_contiguous_slots(ctlr, id, count, slot); |
| default: |
| return -EINVAL; |
| } |
| |
| } |
| EXPORT_SYMBOL(edma_alloc_cont_slots); |
| |
| /** |
| * edma_free_cont_slots - deallocate DMA parameter RAM slots |
| * @slot: first parameter RAM of a set of parameter RAM slots to be freed |
| * @count: the number of contiguous parameter RAM slots to be freed |
| * |
| * This deallocates the parameter RAM slots allocated by |
| * edma_alloc_cont_slots. |
| * Callers/applications need to keep track of sets of contiguous |
| * parameter RAM slots that have been allocated using the edma_alloc_cont_slots |
| * API. |
| * Callers are responsible for ensuring the slots are inactive, and will |
| * not be activated. |
| */ |
| int edma_free_cont_slots(unsigned slot, int count) |
| { |
| unsigned ctlr, slot_to_free; |
| int i; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_channels || |
| slot >= edma_cc[ctlr]->num_slots || |
| count < 1) |
| return -EINVAL; |
| |
| for (i = slot; i < slot + count; ++i) { |
| ctlr = EDMA_CTLR(i); |
| slot_to_free = EDMA_CHAN_SLOT(i); |
| |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free), |
| &dummy_paramset, PARM_SIZE); |
| clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(edma_free_cont_slots); |
| |
| /*-----------------------------------------------------------------------*/ |
| |
| /* Parameter RAM operations (i) -- read/write partial slots */ |
| |
| /** |
| * edma_set_src - set initial DMA source address in parameter RAM slot |
| * @slot: parameter RAM slot being configured |
| * @src_port: physical address of source (memory, controller FIFO, etc) |
| * @addressMode: INCR, except in very rare cases |
| * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the |
| * width to use when addressing the fifo (e.g. W8BIT, W32BIT) |
| * |
| * Note that the source address is modified during the DMA transfer |
| * according to edma_set_src_index(). |
| */ |
| void edma_set_src(unsigned slot, dma_addr_t src_port, |
| enum address_mode mode, enum fifo_width width) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_slots) { |
| unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); |
| |
| if (mode) { |
| /* set SAM and program FWID */ |
| i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8)); |
| } else { |
| /* clear SAM */ |
| i &= ~SAM; |
| } |
| edma_parm_write(ctlr, PARM_OPT, slot, i); |
| |
| /* set the source port address |
| in source register of param structure */ |
| edma_parm_write(ctlr, PARM_SRC, slot, src_port); |
| } |
| } |
| EXPORT_SYMBOL(edma_set_src); |
| |
| /** |
| * edma_set_dest - set initial DMA destination address in parameter RAM slot |
| * @slot: parameter RAM slot being configured |
| * @dest_port: physical address of destination (memory, controller FIFO, etc) |
| * @addressMode: INCR, except in very rare cases |
| * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the |
| * width to use when addressing the fifo (e.g. W8BIT, W32BIT) |
| * |
| * Note that the destination address is modified during the DMA transfer |
| * according to edma_set_dest_index(). |
| */ |
| void edma_set_dest(unsigned slot, dma_addr_t dest_port, |
| enum address_mode mode, enum fifo_width width) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_slots) { |
| unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); |
| |
| if (mode) { |
| /* set DAM and program FWID */ |
| i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8)); |
| } else { |
| /* clear DAM */ |
| i &= ~DAM; |
| } |
| edma_parm_write(ctlr, PARM_OPT, slot, i); |
| /* set the destination port address |
| in dest register of param structure */ |
| edma_parm_write(ctlr, PARM_DST, slot, dest_port); |
| } |
| } |
| EXPORT_SYMBOL(edma_set_dest); |
| |
| /** |
| * edma_get_position - returns the current transfer point |
| * @slot: parameter RAM slot being examined |
| * @dst: true selects the dest position, false the source |
| * |
| * Returns the position of the current active slot |
| */ |
| dma_addr_t edma_get_position(unsigned slot, bool dst) |
| { |
| u32 offs, ctlr = EDMA_CTLR(slot); |
| |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| offs = PARM_OFFSET(slot); |
| offs += dst ? PARM_DST : PARM_SRC; |
| |
| return edma_read(ctlr, offs); |
| } |
| |
| /** |
| * edma_set_src_index - configure DMA source address indexing |
| * @slot: parameter RAM slot being configured |
| * @src_bidx: byte offset between source arrays in a frame |
| * @src_cidx: byte offset between source frames in a block |
| * |
| * Offsets are specified to support either contiguous or discontiguous |
| * memory transfers, or repeated access to a hardware register, as needed. |
| * When accessing hardware registers, both offsets are normally zero. |
| */ |
| void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_slots) { |
| edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, |
| 0xffff0000, src_bidx); |
| edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, |
| 0xffff0000, src_cidx); |
| } |
| } |
| EXPORT_SYMBOL(edma_set_src_index); |
| |
| /** |
| * edma_set_dest_index - configure DMA destination address indexing |
| * @slot: parameter RAM slot being configured |
| * @dest_bidx: byte offset between destination arrays in a frame |
| * @dest_cidx: byte offset between destination frames in a block |
| * |
| * Offsets are specified to support either contiguous or discontiguous |
| * memory transfers, or repeated access to a hardware register, as needed. |
| * When accessing hardware registers, both offsets are normally zero. |
| */ |
| void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_slots) { |
| edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, |
| 0x0000ffff, dest_bidx << 16); |
| edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, |
| 0x0000ffff, dest_cidx << 16); |
| } |
| } |
| EXPORT_SYMBOL(edma_set_dest_index); |
| |
| /** |
| * edma_set_transfer_params - configure DMA transfer parameters |
| * @slot: parameter RAM slot being configured |
| * @acnt: how many bytes per array (at least one) |
| * @bcnt: how many arrays per frame (at least one) |
| * @ccnt: how many frames per block (at least one) |
| * @bcnt_rld: used only for A-Synchronized transfers; this specifies |
| * the value to reload into bcnt when it decrements to zero |
| * @sync_mode: ASYNC or ABSYNC |
| * |
| * See the EDMA3 documentation to understand how to configure and link |
| * transfers using the fields in PaRAM slots. If you are not doing it |
| * all at once with edma_write_slot(), you will use this routine |
| * plus two calls each for source and destination, setting the initial |
| * address and saying how to index that address. |
| * |
| * An example of an A-Synchronized transfer is a serial link using a |
| * single word shift register. In that case, @acnt would be equal to |
| * that word size; the serial controller issues a DMA synchronization |
| * event to transfer each word, and memory access by the DMA transfer |
| * controller will be word-at-a-time. |
| * |
| * An example of an AB-Synchronized transfer is a device using a FIFO. |
| * In that case, @acnt equals the FIFO width and @bcnt equals its depth. |
| * The controller with the FIFO issues DMA synchronization events when |
| * the FIFO threshold is reached, and the DMA transfer controller will |
| * transfer one frame to (or from) the FIFO. It will probably use |
| * efficient burst modes to access memory. |
| */ |
| void edma_set_transfer_params(unsigned slot, |
| u16 acnt, u16 bcnt, u16 ccnt, |
| u16 bcnt_rld, enum sync_dimension sync_mode) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot < edma_cc[ctlr]->num_slots) { |
| edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot, |
| 0x0000ffff, bcnt_rld << 16); |
| if (sync_mode == ASYNC) |
| edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM); |
| else |
| edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM); |
| /* Set the acount, bcount, ccount registers */ |
| edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt); |
| edma_parm_write(ctlr, PARM_CCNT, slot, ccnt); |
| } |
| } |
| EXPORT_SYMBOL(edma_set_transfer_params); |
| |
| /** |
| * edma_link - link one parameter RAM slot to another |
| * @from: parameter RAM slot originating the link |
| * @to: parameter RAM slot which is the link target |
| * |
| * The originating slot should not be part of any active DMA transfer. |
| */ |
| void edma_link(unsigned from, unsigned to) |
| { |
| unsigned ctlr_from, ctlr_to; |
| |
| ctlr_from = EDMA_CTLR(from); |
| from = EDMA_CHAN_SLOT(from); |
| ctlr_to = EDMA_CTLR(to); |
| to = EDMA_CHAN_SLOT(to); |
| |
| if (from >= edma_cc[ctlr_from]->num_slots) |
| return; |
| if (to >= edma_cc[ctlr_to]->num_slots) |
| return; |
| edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000, |
| PARM_OFFSET(to)); |
| } |
| EXPORT_SYMBOL(edma_link); |
| |
| /** |
| * edma_unlink - cut link from one parameter RAM slot |
| * @from: parameter RAM slot originating the link |
| * |
| * The originating slot should not be part of any active DMA transfer. |
| * Its link is set to 0xffff. |
| */ |
| void edma_unlink(unsigned from) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(from); |
| from = EDMA_CHAN_SLOT(from); |
| |
| if (from >= edma_cc[ctlr]->num_slots) |
| return; |
| edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff); |
| } |
| EXPORT_SYMBOL(edma_unlink); |
| |
| /*-----------------------------------------------------------------------*/ |
| |
| /* Parameter RAM operations (ii) -- read/write whole parameter sets */ |
| |
| /** |
| * edma_write_slot - write parameter RAM data for slot |
| * @slot: number of parameter RAM slot being modified |
| * @param: data to be written into parameter RAM slot |
| * |
| * Use this to assign all parameters of a transfer at once. This |
| * allows more efficient setup of transfers than issuing multiple |
| * calls to set up those parameters in small pieces, and provides |
| * complete control over all transfer options. |
| */ |
| void edma_write_slot(unsigned slot, const struct edmacc_param *param) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot >= edma_cc[ctlr]->num_slots) |
| return; |
| memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param, |
| PARM_SIZE); |
| } |
| EXPORT_SYMBOL(edma_write_slot); |
| |
| /** |
| * edma_read_slot - read parameter RAM data from slot |
| * @slot: number of parameter RAM slot being copied |
| * @param: where to store copy of parameter RAM data |
| * |
| * Use this to read data from a parameter RAM slot, perhaps to |
| * save them as a template for later reuse. |
| */ |
| void edma_read_slot(unsigned slot, struct edmacc_param *param) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(slot); |
| slot = EDMA_CHAN_SLOT(slot); |
| |
| if (slot >= edma_cc[ctlr]->num_slots) |
| return; |
| memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot), |
| PARM_SIZE); |
| } |
| EXPORT_SYMBOL(edma_read_slot); |
| |
| /*-----------------------------------------------------------------------*/ |
| |
| /* Various EDMA channel control operations */ |
| |
| /** |
| * edma_pause - pause dma on a channel |
| * @channel: on which edma_start() has been called |
| * |
| * This temporarily disables EDMA hardware events on the specified channel, |
| * preventing them from triggering new transfers on its behalf |
| */ |
| void edma_pause(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel < edma_cc[ctlr]->num_channels) { |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask); |
| } |
| } |
| EXPORT_SYMBOL(edma_pause); |
| |
| /** |
| * edma_resume - resumes dma on a paused channel |
| * @channel: on which edma_pause() has been called |
| * |
| * This re-enables EDMA hardware events on the specified channel. |
| */ |
| void edma_resume(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel < edma_cc[ctlr]->num_channels) { |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask); |
| } |
| } |
| EXPORT_SYMBOL(edma_resume); |
| |
| int edma_trigger_channel(unsigned channel) |
| { |
| unsigned ctlr; |
| unsigned int mask; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask); |
| |
| pr_debug("EDMA: ESR%d %08x\n", (channel >> 5), |
| edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5))); |
| return 0; |
| } |
| EXPORT_SYMBOL(edma_trigger_channel); |
| |
| /** |
| * edma_start - start dma on a channel |
| * @channel: channel being activated |
| * |
| * Channels with event associations will be triggered by their hardware |
| * events, and channels without such associations will be triggered by |
| * software. (At this writing there is no interface for using software |
| * triggers except with channels that don't support hardware triggers.) |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int edma_start(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel < edma_cc[ctlr]->num_channels) { |
| int j = channel >> 5; |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| /* EDMA channels without event association */ |
| if (test_bit(channel, edma_cc[ctlr]->edma_unused)) { |
| pr_debug("EDMA: ESR%d %08x\n", j, |
| edma_shadow0_read_array(ctlr, SH_ESR, j)); |
| edma_shadow0_write_array(ctlr, SH_ESR, j, mask); |
| return 0; |
| } |
| |
| /* EDMA channel with event association */ |
| pr_debug("EDMA: ER%d %08x\n", j, |
| edma_shadow0_read_array(ctlr, SH_ER, j)); |
| /* Clear any pending event or error */ |
| edma_write_array(ctlr, EDMA_ECR, j, mask); |
| edma_write_array(ctlr, EDMA_EMCR, j, mask); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ctlr, SH_SECR, j, mask); |
| edma_shadow0_write_array(ctlr, SH_EESR, j, mask); |
| pr_debug("EDMA: EER%d %08x\n", j, |
| edma_shadow0_read_array(ctlr, SH_EER, j)); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(edma_start); |
| |
| /** |
| * edma_stop - stops dma on the channel passed |
| * @channel: channel being deactivated |
| * |
| * When @lch is a channel, any active transfer is paused and |
| * all pending hardware events are cleared. The current transfer |
| * may not be resumed, and the channel's Parameter RAM should be |
| * reinitialized before being reused. |
| */ |
| void edma_stop(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel < edma_cc[ctlr]->num_channels) { |
| int j = channel >> 5; |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ctlr, SH_EECR, j, mask); |
| edma_shadow0_write_array(ctlr, SH_ECR, j, mask); |
| edma_shadow0_write_array(ctlr, SH_SECR, j, mask); |
| edma_write_array(ctlr, EDMA_EMCR, j, mask); |
| |
| pr_debug("EDMA: EER%d %08x\n", j, |
| edma_shadow0_read_array(ctlr, SH_EER, j)); |
| |
| /* REVISIT: consider guarding against inappropriate event |
| * chaining by overwriting with dummy_paramset. |
| */ |
| } |
| } |
| EXPORT_SYMBOL(edma_stop); |
| |
| /****************************************************************************** |
| * |
| * It cleans ParamEntry qand bring back EDMA to initial state if media has |
| * been removed before EDMA has finished.It is usedful for removable media. |
| * Arguments: |
| * ch_no - channel no |
| * |
| * Return: zero on success, or corresponding error no on failure |
| * |
| * FIXME this should not be needed ... edma_stop() should suffice. |
| * |
| *****************************************************************************/ |
| |
| void edma_clean_channel(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel < edma_cc[ctlr]->num_channels) { |
| int j = (channel >> 5); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| pr_debug("EDMA: EMR%d %08x\n", j, |
| edma_read_array(ctlr, EDMA_EMR, j)); |
| edma_shadow0_write_array(ctlr, SH_ECR, j, mask); |
| /* Clear the corresponding EMR bits */ |
| edma_write_array(ctlr, EDMA_EMCR, j, mask); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ctlr, SH_SECR, j, mask); |
| edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); |
| } |
| } |
| EXPORT_SYMBOL(edma_clean_channel); |
| |
| /* |
| * edma_clear_event - clear an outstanding event on the DMA channel |
| * Arguments: |
| * channel - channel number |
| */ |
| void edma_clear_event(unsigned channel) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel >= edma_cc[ctlr]->num_channels) |
| return; |
| if (channel < 32) |
| edma_write(ctlr, EDMA_ECR, BIT(channel)); |
| else |
| edma_write(ctlr, EDMA_ECRH, BIT(channel - 32)); |
| } |
| EXPORT_SYMBOL(edma_clear_event); |
| |
| /* |
| * edma_assign_channel_eventq - move given channel to desired eventq |
| * Arguments: |
| * channel - channel number |
| * eventq_no - queue to move the channel |
| * |
| * Can be used to move a channel to a selected event queue. |
| */ |
| void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no) |
| { |
| unsigned ctlr; |
| |
| ctlr = EDMA_CTLR(channel); |
| channel = EDMA_CHAN_SLOT(channel); |
| |
| if (channel >= edma_cc[ctlr]->num_channels) |
| return; |
| |
| /* default to low priority queue */ |
| if (eventq_no == EVENTQ_DEFAULT) |
| eventq_no = edma_cc[ctlr]->default_queue; |
| if (eventq_no >= edma_cc[ctlr]->num_tc) |
| return; |
| |
| map_dmach_queue(ctlr, channel, eventq_no); |
| } |
| EXPORT_SYMBOL(edma_assign_channel_eventq); |
| |
| static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, |
| struct edma *edma_cc, int cc_id) |
| { |
| int i; |
| u32 value, cccfg; |
| s8 (*queue_priority_map)[2]; |
| |
| /* Decode the eDMA3 configuration from CCCFG register */ |
| cccfg = edma_read(cc_id, EDMA_CCCFG); |
| |
| value = GET_NUM_REGN(cccfg); |
| edma_cc->num_region = BIT(value); |
| |
| value = GET_NUM_DMACH(cccfg); |
| edma_cc->num_channels = BIT(value + 1); |
| |
| value = GET_NUM_PAENTRY(cccfg); |
| edma_cc->num_slots = BIT(value + 4); |
| |
| value = GET_NUM_EVQUE(cccfg); |
| edma_cc->num_tc = value + 1; |
| |
| dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id, |
| cccfg); |
| dev_dbg(dev, "num_region: %u\n", edma_cc->num_region); |
| dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels); |
| dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots); |
| dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc); |
| |
| /* Nothing need to be done if queue priority is provided */ |
| if (pdata->queue_priority_mapping) |
| return 0; |
| |
| /* |
| * Configure TC/queue priority as follows: |
| * Q0 - priority 0 |
| * Q1 - priority 1 |
| * Q2 - priority 2 |
| * ... |
| * The meaning of priority numbers: 0 highest priority, 7 lowest |
| * priority. So Q0 is the highest priority queue and the last queue has |
| * the lowest priority. |
| */ |
| queue_priority_map = devm_kzalloc(dev, |
| (edma_cc->num_tc + 1) * sizeof(s8), |
| GFP_KERNEL); |
| if (!queue_priority_map) |
| return -ENOMEM; |
| |
| for (i = 0; i < edma_cc->num_tc; i++) { |
| queue_priority_map[i][0] = i; |
| queue_priority_map[i][1] = i; |
| } |
| queue_priority_map[i][0] = -1; |
| queue_priority_map[i][1] = -1; |
| |
| pdata->queue_priority_mapping = queue_priority_map; |
| /* Default queue has the lowest priority */ |
| pdata->default_queue = i - 1; |
| |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES) |
| |
| static int edma_xbar_event_map(struct device *dev, struct device_node *node, |
| struct edma_soc_info *pdata, size_t sz) |
| { |
| const char pname[] = "ti,edma-xbar-event-map"; |
| struct resource res; |
| void __iomem *xbar; |
| s16 (*xbar_chans)[2]; |
| size_t nelm = sz / sizeof(s16); |
| u32 shift, offset, mux; |
| int ret, i; |
| |
| xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL); |
| if (!xbar_chans) |
| return -ENOMEM; |
| |
| ret = of_address_to_resource(node, 1, &res); |
| if (ret) |
| return -ENOMEM; |
| |
| xbar = devm_ioremap(dev, res.start, resource_size(&res)); |
| if (!xbar) |
| return -ENOMEM; |
| |
| ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm); |
| if (ret) |
| return -EIO; |
| |
| /* Invalidate last entry for the other user of this mess */ |
| nelm >>= 1; |
| xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1; |
| |
| for (i = 0; i < nelm; i++) { |
| shift = (xbar_chans[i][1] & 0x03) << 3; |
| offset = xbar_chans[i][1] & 0xfffffffc; |
| mux = readl(xbar + offset); |
| mux &= ~(0xff << shift); |
| mux |= xbar_chans[i][0] << shift; |
| writel(mux, (xbar + offset)); |
| } |
| |
| pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; |
| return 0; |
| } |
| |
| static int edma_of_parse_dt(struct device *dev, |
| struct device_node *node, |
| struct edma_soc_info *pdata) |
| { |
| int ret = 0; |
| struct property *prop; |
| size_t sz; |
| struct edma_rsv_info *rsv_info; |
| |
| rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL); |
| if (!rsv_info) |
| return -ENOMEM; |
| pdata->rsv = rsv_info; |
| |
| prop = of_find_property(node, "ti,edma-xbar-event-map", &sz); |
| if (prop) |
| ret = edma_xbar_event_map(dev, node, pdata, sz); |
| |
| return ret; |
| } |
| |
| static struct of_dma_filter_info edma_filter_info = { |
| .filter_fn = edma_filter_fn, |
| }; |
| |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| struct device_node *node) |
| { |
| struct edma_soc_info *info; |
| int ret; |
| |
| info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = edma_of_parse_dt(dev, node, info); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap); |
| dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap); |
| of_dma_controller_register(dev->of_node, of_dma_simple_xlate, |
| &edma_filter_info); |
| |
| return info; |
| } |
| #else |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| struct device_node *node) |
| { |
| return ERR_PTR(-ENOSYS); |
| } |
| #endif |
| |
| static int edma_probe(struct platform_device *pdev) |
| { |
| struct edma_soc_info **info = pdev->dev.platform_data; |
| struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL}; |
| s8 (*queue_priority_mapping)[2]; |
| int i, j, off, ln, found = 0; |
| int status = -1; |
| const s16 (*rsv_chans)[2]; |
| const s16 (*rsv_slots)[2]; |
| const s16 (*xbar_chans)[2]; |
| int irq[EDMA_MAX_CC] = {0, 0}; |
| int err_irq[EDMA_MAX_CC] = {0, 0}; |
| struct resource *r[EDMA_MAX_CC] = {NULL}; |
| struct resource res[EDMA_MAX_CC]; |
| char res_name[10]; |
| struct device_node *node = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| if (node) { |
| /* Check if this is a second instance registered */ |
| if (arch_num_cc) { |
| dev_err(dev, "only one EDMA instance is supported via DT\n"); |
| return -ENODEV; |
| } |
| |
| ninfo[0] = edma_setup_info_from_dt(dev, node); |
| if (IS_ERR(ninfo[0])) { |
| dev_err(dev, "failed to get DT data\n"); |
| return PTR_ERR(ninfo[0]); |
| } |
| |
| info = ninfo; |
| } |
| |
| if (!info) |
| return -ENODEV; |
| |
| pm_runtime_enable(dev); |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) { |
| dev_err(dev, "pm_runtime_get_sync() failed\n"); |
| return ret; |
| } |
| |
| for (j = 0; j < EDMA_MAX_CC; j++) { |
| if (!info[j]) { |
| if (!found) |
| return -ENODEV; |
| break; |
| } |
| if (node) { |
| ret = of_address_to_resource(node, j, &res[j]); |
| if (!ret) |
| r[j] = &res[j]; |
| } else { |
| sprintf(res_name, "edma_cc%d", j); |
| r[j] = platform_get_resource_byname(pdev, |
| IORESOURCE_MEM, |
| res_name); |
| } |
| if (!r[j]) { |
| if (found) |
| break; |
| else |
| return -ENODEV; |
| } else { |
| found = 1; |
| } |
| |
| edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]); |
| if (IS_ERR(edmacc_regs_base[j])) |
| return PTR_ERR(edmacc_regs_base[j]); |
| |
| edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma), |
| GFP_KERNEL); |
| if (!edma_cc[j]) |
| return -ENOMEM; |
| |
| /* Get eDMA3 configuration from IP */ |
| ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j); |
| if (ret) |
| return ret; |
| |
| edma_cc[j]->default_queue = info[j]->default_queue; |
| |
| dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", |
| edmacc_regs_base[j]); |
| |
| for (i = 0; i < edma_cc[j]->num_slots; i++) |
| memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i), |
| &dummy_paramset, PARM_SIZE); |
| |
| /* Mark all channels as unused */ |
| memset(edma_cc[j]->edma_unused, 0xff, |
| sizeof(edma_cc[j]->edma_unused)); |
| |
| if (info[j]->rsv) { |
| |
| /* Clear the reserved channels in unused list */ |
| rsv_chans = info[j]->rsv->rsv_chans; |
| if (rsv_chans) { |
| for (i = 0; rsv_chans[i][0] != -1; i++) { |
| off = rsv_chans[i][0]; |
| ln = rsv_chans[i][1]; |
| clear_bits(off, ln, |
| edma_cc[j]->edma_unused); |
| } |
| } |
| |
| /* Set the reserved slots in inuse list */ |
| rsv_slots = info[j]->rsv->rsv_slots; |
| if (rsv_slots) { |
| for (i = 0; rsv_slots[i][0] != -1; i++) { |
| off = rsv_slots[i][0]; |
| ln = rsv_slots[i][1]; |
| set_bits(off, ln, |
| edma_cc[j]->edma_inuse); |
| } |
| } |
| } |
| |
| /* Clear the xbar mapped channels in unused list */ |
| xbar_chans = info[j]->xbar_chans; |
| if (xbar_chans) { |
| for (i = 0; xbar_chans[i][1] != -1; i++) { |
| off = xbar_chans[i][1]; |
| clear_bits(off, 1, |
| edma_cc[j]->edma_unused); |
| } |
| } |
| |
| if (node) { |
| irq[j] = irq_of_parse_and_map(node, 0); |
| err_irq[j] = irq_of_parse_and_map(node, 2); |
| } else { |
| char irq_name[10]; |
| |
| sprintf(irq_name, "edma%d", j); |
| irq[j] = platform_get_irq_byname(pdev, irq_name); |
| |
| sprintf(irq_name, "edma%d_err", j); |
| err_irq[j] = platform_get_irq_byname(pdev, irq_name); |
| } |
| edma_cc[j]->irq_res_start = irq[j]; |
| edma_cc[j]->irq_res_end = err_irq[j]; |
| |
| status = devm_request_irq(dev, irq[j], dma_irq_handler, 0, |
| "edma", dev); |
| if (status < 0) { |
| dev_dbg(&pdev->dev, |
| "devm_request_irq %d failed --> %d\n", |
| irq[j], status); |
| return status; |
| } |
| |
| status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0, |
| "edma_error", dev); |
| if (status < 0) { |
| dev_dbg(&pdev->dev, |
| "devm_request_irq %d failed --> %d\n", |
| err_irq[j], status); |
| return status; |
| } |
| |
| for (i = 0; i < edma_cc[j]->num_channels; i++) |
| map_dmach_queue(j, i, info[j]->default_queue); |
| |
| queue_priority_mapping = info[j]->queue_priority_mapping; |
| |
| /* Event queue priority mapping */ |
| for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| assign_priority_to_queue(j, |
| queue_priority_mapping[i][0], |
| queue_priority_mapping[i][1]); |
| |
| /* Map the channel to param entry if channel mapping logic |
| * exist |
| */ |
| if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST) |
| map_dmach_param(j); |
| |
| for (i = 0; i < edma_cc[j]->num_region; i++) { |
| edma_write_array2(j, EDMA_DRAE, i, 0, 0x0); |
| edma_write_array2(j, EDMA_DRAE, i, 1, 0x0); |
| edma_write_array(j, EDMA_QRAE, i, 0x0); |
| } |
| arch_num_cc++; |
| } |
| |
| return 0; |
| } |
| |
| static struct platform_driver edma_driver = { |
| .driver = { |
| .name = "edma", |
| .of_match_table = edma_of_ids, |
| }, |
| .probe = edma_probe, |
| }; |
| |
| static int __init edma_init(void) |
| { |
| return platform_driver_probe(&edma_driver, edma_probe); |
| } |
| arch_initcall(edma_init); |
| |