Merge commit 'v2.6.34-rc6' into sched/core
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt
index 6f33593..8239ebb 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.txt
@@ -211,7 +211,7 @@
 desirable to first provide fair CPU time to each user on the system and then to
 each task belonging to a user.
 
-CONFIG_GROUP_SCHED strives to achieve exactly that.  It lets tasks to be
+CONFIG_CGROUP_SCHED strives to achieve exactly that.  It lets tasks to be
 grouped and divides CPU time fairly among such groups.
 
 CONFIG_RT_GROUP_SCHED permits to group real-time (i.e., SCHED_FIFO and
@@ -220,38 +220,11 @@
 CONFIG_FAIR_GROUP_SCHED permits to group CFS (i.e., SCHED_NORMAL and
 SCHED_BATCH) tasks.
 
-At present, there are two (mutually exclusive) mechanisms to group tasks for
-CPU bandwidth control purposes:
-
- - Based on user id (CONFIG_USER_SCHED)
-
-   With this option, tasks are grouped according to their user id.
-
- - Based on "cgroup" pseudo filesystem (CONFIG_CGROUP_SCHED)
-
-   This options needs CONFIG_CGROUPS to be defined, and lets the administrator
+   These options need CONFIG_CGROUPS to be defined, and let the administrator
    create arbitrary groups of tasks, using the "cgroup" pseudo filesystem.  See
    Documentation/cgroups/cgroups.txt for more information about this filesystem.
 
-Only one of these options to group tasks can be chosen and not both.
-
-When CONFIG_USER_SCHED is defined, a directory is created in sysfs for each new
-user and a "cpu_share" file is added in that directory.
-
-	# cd /sys/kernel/uids
-	# cat 512/cpu_share		# Display user 512's CPU share
-	1024
-	# echo 2048 > 512/cpu_share	# Modify user 512's CPU share
-	# cat 512/cpu_share		# Display user 512's CPU share
-	2048
-	#
-
-CPU bandwidth between two users is divided in the ratio of their CPU shares.
-For example: if you would like user "root" to get twice the bandwidth of user
-"guest," then set the cpu_share for both the users such that "root"'s cpu_share
-is twice "guest"'s cpu_share.
-
-When CONFIG_CGROUP_SCHED is defined, a "cpu.shares" file is created for each
+When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
 group created using the pseudo filesystem.  See example steps below to create
 task groups and modify their CPU share using the "cgroups" pseudo filesystem.
 
@@ -273,24 +246,3 @@
 
 	# #Launch gmplayer (or your favourite movie player)
 	# echo <movie_player_pid> > multimedia/tasks
-
-8. Implementation note: user namespaces
-
-User namespaces are intended to be hierarchical.  But they are currently
-only partially implemented.  Each of those has ramifications for CFS.
-
-First, since user namespaces are hierarchical, the /sys/kernel/uids
-presentation is inadequate.  Eventually we will likely want to use sysfs
-tagging to provide private views of /sys/kernel/uids within each user
-namespace.
-
-Second, the hierarchical nature is intended to support completely
-unprivileged use of user namespaces.  So if using user groups, then
-we want the users in a user namespace to be children of the user
-who created it.
-
-That is currently unimplemented.  So instead, every user in a new
-user namespace will receive 1024 shares just like any user in the
-initial user namespace.  Note that at the moment creation of a new
-user namespace requires each of CAP_SYS_ADMIN, CAP_SETUID, and
-CAP_SETGID.
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index 86eabe6..605b0d4 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -126,23 +126,12 @@
 2.3 Basis for grouping tasks
 ----------------------------
 
-There are two compile-time settings for allocating CPU bandwidth. These are
-configured using the "Basis for grouping tasks" multiple choice menu under
-General setup > Group CPU Scheduler:
-
-a. CONFIG_USER_SCHED (aka "Basis for grouping tasks" =  "user id")
-
-This lets you use the virtual files under
-"/sys/kernel/uids/<uid>/cpu_rt_runtime_us" to control he CPU time reserved for
-each user .
-
-The other option is:
-
-.o CONFIG_CGROUP_SCHED (aka "Basis for grouping tasks" = "Control groups")
+Enabling CONFIG_RT_GROUP_SCHED lets you explicitly allocate real
+CPU bandwidth to task groups.
 
 This uses the /cgroup virtual file system and
 "/cgroup/<cgroup>/cpu.rt_runtime_us" to control the CPU time reserved for each
-control group instead.
+control group.
 
 For more information on working with control groups, you should read
 Documentation/cgroups/cgroups.txt as well.
@@ -161,8 +150,7 @@
 ===============
 
 There is work in progress to make the scheduling period for each group
-("/sys/kernel/uids/<uid>/cpu_rt_period_us" or
-"/cgroup/<cgroup>/cpu.rt_period_us" respectively) configurable as well.
+("/cgroup/<cgroup>/cpu.rt_period_us") configurable as well.
 
 The constraint on the period is that a subgroup must have a smaller or
 equal period to its parent. But realistically its not very useful _yet_
diff --git a/include/linux/cpuset.h b/include/linux/cpuset.h
index a5740fc..a73454a 100644
--- a/include/linux/cpuset.h
+++ b/include/linux/cpuset.h
@@ -21,8 +21,7 @@
 extern int cpuset_init(void);
 extern void cpuset_init_smp(void);
 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
-extern void cpuset_cpus_allowed_locked(struct task_struct *p,
-				       struct cpumask *mask);
+extern int cpuset_cpus_allowed_fallback(struct task_struct *p);
 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
 #define cpuset_current_mems_allowed (current->mems_allowed)
 void cpuset_init_current_mems_allowed(void);
@@ -69,9 +68,6 @@
 extern void cpuset_task_status_allowed(struct seq_file *m,
 					struct task_struct *task);
 
-extern void cpuset_lock(void);
-extern void cpuset_unlock(void);
-
 extern int cpuset_mem_spread_node(void);
 
 static inline int cpuset_do_page_mem_spread(void)
@@ -105,10 +101,11 @@
 {
 	cpumask_copy(mask, cpu_possible_mask);
 }
-static inline void cpuset_cpus_allowed_locked(struct task_struct *p,
-					      struct cpumask *mask)
+
+static inline int cpuset_cpus_allowed_fallback(struct task_struct *p)
 {
-	cpumask_copy(mask, cpu_possible_mask);
+	cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
+	return cpumask_any(cpu_active_mask);
 }
 
 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
@@ -157,9 +154,6 @@
 {
 }
 
-static inline void cpuset_lock(void) {}
-static inline void cpuset_unlock(void) {}
-
 static inline int cpuset_mem_spread_node(void)
 {
 	return 0;
diff --git a/include/linux/sched.h b/include/linux/sched.h
index dad7f66..dfea405 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -275,11 +275,17 @@
 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 extern int select_nohz_load_balancer(int cpu);
 extern int get_nohz_load_balancer(void);
+extern int nohz_ratelimit(int cpu);
 #else
 static inline int select_nohz_load_balancer(int cpu)
 {
 	return 0;
 }
+
+static inline int nohz_ratelimit(int cpu)
+{
+	return 0;
+}
 #endif
 
 /*
@@ -954,6 +960,7 @@
 	char *name;
 #endif
 
+	unsigned int span_weight;
 	/*
 	 * Span of all CPUs in this domain.
 	 *
@@ -1026,12 +1033,17 @@
 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
 #define WF_FORK		0x02		/* child wakeup after fork */
 
+#define ENQUEUE_WAKEUP		1
+#define ENQUEUE_WAKING		2
+#define ENQUEUE_HEAD		4
+
+#define DEQUEUE_SLEEP		1
+
 struct sched_class {
 	const struct sched_class *next;
 
-	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup,
-			      bool head);
-	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
+	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 	void (*yield_task) (struct rq *rq);
 
 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
@@ -1040,7 +1052,8 @@
 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
 #ifdef CONFIG_SMP
-	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
+	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
+			       int sd_flag, int flags);
 
 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 	void (*post_schedule) (struct rq *this_rq);
@@ -1077,36 +1090,8 @@
 	unsigned long weight, inv_weight;
 };
 
-/*
- * CFS stats for a schedulable entity (task, task-group etc)
- *
- * Current field usage histogram:
- *
- *     4 se->block_start
- *     4 se->run_node
- *     4 se->sleep_start
- *     6 se->load.weight
- */
-struct sched_entity {
-	struct load_weight	load;		/* for load-balancing */
-	struct rb_node		run_node;
-	struct list_head	group_node;
-	unsigned int		on_rq;
-
-	u64			exec_start;
-	u64			sum_exec_runtime;
-	u64			vruntime;
-	u64			prev_sum_exec_runtime;
-
-	u64			last_wakeup;
-	u64			avg_overlap;
-
-	u64			nr_migrations;
-
-	u64			start_runtime;
-	u64			avg_wakeup;
-
 #ifdef CONFIG_SCHEDSTATS
+struct sched_statistics {
 	u64			wait_start;
 	u64			wait_max;
 	u64			wait_count;
@@ -1138,6 +1123,24 @@
 	u64			nr_wakeups_affine_attempts;
 	u64			nr_wakeups_passive;
 	u64			nr_wakeups_idle;
+};
+#endif
+
+struct sched_entity {
+	struct load_weight	load;		/* for load-balancing */
+	struct rb_node		run_node;
+	struct list_head	group_node;
+	unsigned int		on_rq;
+
+	u64			exec_start;
+	u64			sum_exec_runtime;
+	u64			vruntime;
+	u64			prev_sum_exec_runtime;
+
+	u64			nr_migrations;
+
+#ifdef CONFIG_SCHEDSTATS
+	struct sched_statistics statistics;
 #endif
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1847,6 +1850,7 @@
 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
 
 #ifdef CONFIG_HOTPLUG_CPU
+extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
 extern void idle_task_exit(void);
 #else
 static inline void idle_task_exit(void) {}
diff --git a/init/Kconfig b/init/Kconfig
index eb77e8c..5fe94b8 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -604,8 +604,7 @@
 	default n
 	help
 	  This feature lets you explicitly allocate real CPU bandwidth
-	  to users or control groups (depending on the "Basis for grouping tasks"
-	  setting below. If enabled, it will also make it impossible to
+	  to task groups. If enabled, it will also make it impossible to
 	  schedule realtime tasks for non-root users until you allocate
 	  realtime bandwidth for them.
 	  See Documentation/scheduler/sched-rt-group.txt for more information.
diff --git a/kernel/capability.c b/kernel/capability.c
index 9e4697e..2f05303 100644
--- a/kernel/capability.c
+++ b/kernel/capability.c
@@ -15,7 +15,6 @@
 #include <linux/syscalls.h>
 #include <linux/pid_namespace.h>
 #include <asm/uaccess.h>
-#include "cred-internals.h"
 
 /*
  * Leveraged for setting/resetting capabilities
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 25bba73..914aedc 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -164,6 +164,7 @@
 }
 
 struct take_cpu_down_param {
+	struct task_struct *caller;
 	unsigned long mod;
 	void *hcpu;
 };
@@ -172,6 +173,7 @@
 static int __ref take_cpu_down(void *_param)
 {
 	struct take_cpu_down_param *param = _param;
+	unsigned int cpu = (unsigned long)param->hcpu;
 	int err;
 
 	/* Ensure this CPU doesn't handle any more interrupts. */
@@ -182,6 +184,8 @@
 	raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
 				param->hcpu);
 
+	if (task_cpu(param->caller) == cpu)
+		move_task_off_dead_cpu(cpu, param->caller);
 	/* Force idle task to run as soon as we yield: it should
 	   immediately notice cpu is offline and die quickly. */
 	sched_idle_next();
@@ -192,10 +196,10 @@
 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
 {
 	int err, nr_calls = 0;
-	cpumask_var_t old_allowed;
 	void *hcpu = (void *)(long)cpu;
 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
 	struct take_cpu_down_param tcd_param = {
+		.caller = current,
 		.mod = mod,
 		.hcpu = hcpu,
 	};
@@ -206,9 +210,6 @@
 	if (!cpu_online(cpu))
 		return -EINVAL;
 
-	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
-		return -ENOMEM;
-
 	cpu_hotplug_begin();
 	set_cpu_active(cpu, false);
 	err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
@@ -225,10 +226,6 @@
 		goto out_release;
 	}
 
-	/* Ensure that we are not runnable on dying cpu */
-	cpumask_copy(old_allowed, &current->cpus_allowed);
-	set_cpus_allowed_ptr(current, cpu_active_mask);
-
 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
 	if (err) {
 		set_cpu_active(cpu, true);
@@ -237,7 +234,7 @@
 					    hcpu) == NOTIFY_BAD)
 			BUG();
 
-		goto out_allowed;
+		goto out_release;
 	}
 	BUG_ON(cpu_online(cpu));
 
@@ -255,8 +252,6 @@
 
 	check_for_tasks(cpu);
 
-out_allowed:
-	set_cpus_allowed_ptr(current, old_allowed);
 out_release:
 	cpu_hotplug_done();
 	if (!err) {
@@ -264,7 +259,6 @@
 					    hcpu) == NOTIFY_BAD)
 			BUG();
 	}
-	free_cpumask_var(old_allowed);
 	return err;
 }
 
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index d109467..9a50c5f 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -2182,19 +2182,52 @@
 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
 {
 	mutex_lock(&callback_mutex);
-	cpuset_cpus_allowed_locked(tsk, pmask);
-	mutex_unlock(&callback_mutex);
-}
-
-/**
- * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
- * Must be called with callback_mutex held.
- **/
-void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
-{
 	task_lock(tsk);
 	guarantee_online_cpus(task_cs(tsk), pmask);
 	task_unlock(tsk);
+	mutex_unlock(&callback_mutex);
+}
+
+int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
+{
+	const struct cpuset *cs;
+	int cpu;
+
+	rcu_read_lock();
+	cs = task_cs(tsk);
+	if (cs)
+		cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
+	rcu_read_unlock();
+
+	/*
+	 * We own tsk->cpus_allowed, nobody can change it under us.
+	 *
+	 * But we used cs && cs->cpus_allowed lockless and thus can
+	 * race with cgroup_attach_task() or update_cpumask() and get
+	 * the wrong tsk->cpus_allowed. However, both cases imply the
+	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
+	 * which takes task_rq_lock().
+	 *
+	 * If we are called after it dropped the lock we must see all
+	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
+	 * set any mask even if it is not right from task_cs() pov,
+	 * the pending set_cpus_allowed_ptr() will fix things.
+	 */
+
+	cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
+	if (cpu >= nr_cpu_ids) {
+		/*
+		 * Either tsk->cpus_allowed is wrong (see above) or it
+		 * is actually empty. The latter case is only possible
+		 * if we are racing with remove_tasks_in_empty_cpuset().
+		 * Like above we can temporary set any mask and rely on
+		 * set_cpus_allowed_ptr() as synchronization point.
+		 */
+		cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
+		cpu = cpumask_any(cpu_active_mask);
+	}
+
+	return cpu;
 }
 
 void cpuset_init_current_mems_allowed(void)
@@ -2383,22 +2416,6 @@
 }
 
 /**
- * cpuset_lock - lock out any changes to cpuset structures
- *
- * The out of memory (oom) code needs to mutex_lock cpusets
- * from being changed while it scans the tasklist looking for a
- * task in an overlapping cpuset.  Expose callback_mutex via this
- * cpuset_lock() routine, so the oom code can lock it, before
- * locking the task list.  The tasklist_lock is a spinlock, so
- * must be taken inside callback_mutex.
- */
-
-void cpuset_lock(void)
-{
-	mutex_lock(&callback_mutex);
-}
-
-/**
  * cpuset_unlock - release lock on cpuset changes
  *
  * Undo the lock taken in a previous cpuset_lock() call.
diff --git a/kernel/cred-internals.h b/kernel/cred-internals.h
deleted file mode 100644
index 2dc4fc2..0000000
--- a/kernel/cred-internals.h
+++ /dev/null
@@ -1,21 +0,0 @@
-/* Internal credentials stuff
- *
- * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
- * as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
- */
-
-/*
- * user.c
- */
-static inline void sched_switch_user(struct task_struct *p)
-{
-#ifdef CONFIG_USER_SCHED
-	sched_move_task(p);
-#endif	/* CONFIG_USER_SCHED */
-}
-
diff --git a/kernel/cred.c b/kernel/cred.c
index 62af181..8f3672a 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -17,7 +17,6 @@
 #include <linux/init_task.h>
 #include <linux/security.h>
 #include <linux/cn_proc.h>
-#include "cred-internals.h"
 
 #if 0
 #define kdebug(FMT, ...) \
@@ -560,8 +559,6 @@
 		atomic_dec(&old->user->processes);
 	alter_cred_subscribers(old, -2);
 
-	sched_switch_user(task);
-
 	/* send notifications */
 	if (new->uid   != old->uid  ||
 	    new->euid  != old->euid ||
diff --git a/kernel/exit.c b/kernel/exit.c
index 7f2683a..eabca5a 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -55,7 +55,6 @@
 #include <asm/unistd.h>
 #include <asm/pgtable.h>
 #include <asm/mmu_context.h>
-#include "cred-internals.h"
 
 static void exit_mm(struct task_struct * tsk);
 
diff --git a/kernel/sched.c b/kernel/sched.c
index 6af210a..4956ed0 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -493,8 +493,11 @@
 	#define CPU_LOAD_IDX_MAX 5
 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 #ifdef CONFIG_NO_HZ
+	u64 nohz_stamp;
 	unsigned char in_nohz_recently;
 #endif
+	unsigned int skip_clock_update;
+
 	/* capture load from *all* tasks on this cpu: */
 	struct load_weight load;
 	unsigned long nr_load_updates;
@@ -592,6 +595,13 @@
 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 {
 	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
+
+	/*
+	 * A queue event has occurred, and we're going to schedule.  In
+	 * this case, we can save a useless back to back clock update.
+	 */
+	if (test_tsk_need_resched(p))
+		rq->skip_clock_update = 1;
 }
 
 static inline int cpu_of(struct rq *rq)
@@ -626,7 +636,8 @@
 
 inline void update_rq_clock(struct rq *rq)
 {
-	rq->clock = sched_clock_cpu(cpu_of(rq));
+	if (!rq->skip_clock_update)
+		rq->clock = sched_clock_cpu(cpu_of(rq));
 }
 
 /*
@@ -904,16 +915,12 @@
 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 
 /*
- * Check whether the task is waking, we use this to synchronize against
- * ttwu() so that task_cpu() reports a stable number.
- *
- * We need to make an exception for PF_STARTING tasks because the fork
- * path might require task_rq_lock() to work, eg. it can call
- * set_cpus_allowed_ptr() from the cpuset clone_ns code.
+ * Check whether the task is waking, we use this to synchronize ->cpus_allowed
+ * against ttwu().
  */
 static inline int task_is_waking(struct task_struct *p)
 {
-	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
+	return unlikely(p->state == TASK_WAKING);
 }
 
 /*
@@ -926,11 +933,9 @@
 	struct rq *rq;
 
 	for (;;) {
-		while (task_is_waking(p))
-			cpu_relax();
 		rq = task_rq(p);
 		raw_spin_lock(&rq->lock);
-		if (likely(rq == task_rq(p) && !task_is_waking(p)))
+		if (likely(rq == task_rq(p)))
 			return rq;
 		raw_spin_unlock(&rq->lock);
 	}
@@ -947,12 +952,10 @@
 	struct rq *rq;
 
 	for (;;) {
-		while (task_is_waking(p))
-			cpu_relax();
 		local_irq_save(*flags);
 		rq = task_rq(p);
 		raw_spin_lock(&rq->lock);
-		if (likely(rq == task_rq(p) && !task_is_waking(p)))
+		if (likely(rq == task_rq(p)))
 			return rq;
 		raw_spin_unlock_irqrestore(&rq->lock, *flags);
 	}
@@ -1229,6 +1232,17 @@
 	if (!tsk_is_polling(rq->idle))
 		smp_send_reschedule(cpu);
 }
+
+int nohz_ratelimit(int cpu)
+{
+	struct rq *rq = cpu_rq(cpu);
+	u64 diff = rq->clock - rq->nohz_stamp;
+
+	rq->nohz_stamp = rq->clock;
+
+	return diff < (NSEC_PER_SEC / HZ) >> 1;
+}
+
 #endif /* CONFIG_NO_HZ */
 
 static u64 sched_avg_period(void)
@@ -1771,8 +1785,6 @@
 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
 		}
 	}
-	update_rq_clock(rq1);
-	update_rq_clock(rq2);
 }
 
 /*
@@ -1803,7 +1815,7 @@
 }
 #endif
 
-static void calc_load_account_active(struct rq *this_rq);
+static void calc_load_account_idle(struct rq *this_rq);
 static void update_sysctl(void);
 static int get_update_sysctl_factor(void);
 
@@ -1860,62 +1872,43 @@
 	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
 }
 
-static void update_avg(u64 *avg, u64 sample)
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 {
-	s64 diff = sample - *avg;
-	*avg += diff >> 3;
-}
-
-static void
-enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
-{
-	if (wakeup)
-		p->se.start_runtime = p->se.sum_exec_runtime;
-
+	update_rq_clock(rq);
 	sched_info_queued(p);
-	p->sched_class->enqueue_task(rq, p, wakeup, head);
+	p->sched_class->enqueue_task(rq, p, flags);
 	p->se.on_rq = 1;
 }
 
-static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
+static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 {
-	if (sleep) {
-		if (p->se.last_wakeup) {
-			update_avg(&p->se.avg_overlap,
-				p->se.sum_exec_runtime - p->se.last_wakeup);
-			p->se.last_wakeup = 0;
-		} else {
-			update_avg(&p->se.avg_wakeup,
-				sysctl_sched_wakeup_granularity);
-		}
-	}
-
+	update_rq_clock(rq);
 	sched_info_dequeued(p);
-	p->sched_class->dequeue_task(rq, p, sleep);
+	p->sched_class->dequeue_task(rq, p, flags);
 	p->se.on_rq = 0;
 }
 
 /*
  * activate_task - move a task to the runqueue.
  */
-static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
+static void activate_task(struct rq *rq, struct task_struct *p, int flags)
 {
 	if (task_contributes_to_load(p))
 		rq->nr_uninterruptible--;
 
-	enqueue_task(rq, p, wakeup, false);
+	enqueue_task(rq, p, flags);
 	inc_nr_running(rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
+static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 {
 	if (task_contributes_to_load(p))
 		rq->nr_uninterruptible++;
 
-	dequeue_task(rq, p, sleep);
+	dequeue_task(rq, p, flags);
 	dec_nr_running(rq);
 }
 
@@ -2273,6 +2266,9 @@
 }
 
 #ifdef CONFIG_SMP
+/*
+ * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
+ */
 static int select_fallback_rq(int cpu, struct task_struct *p)
 {
 	int dest_cpu;
@@ -2289,12 +2285,8 @@
 		return dest_cpu;
 
 	/* No more Mr. Nice Guy. */
-	if (dest_cpu >= nr_cpu_ids) {
-		rcu_read_lock();
-		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
-		rcu_read_unlock();
-		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
-
+	if (unlikely(dest_cpu >= nr_cpu_ids)) {
+		dest_cpu = cpuset_cpus_allowed_fallback(p);
 		/*
 		 * Don't tell them about moving exiting tasks or
 		 * kernel threads (both mm NULL), since they never
@@ -2311,17 +2303,12 @@
 }
 
 /*
- * Gets called from 3 sites (exec, fork, wakeup), since it is called without
- * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
- * by:
- *
- *  exec:           is unstable, retry loop
- *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
+ * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  */
 static inline
-int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
+int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
 {
-	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
+	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
 
 	/*
 	 * In order not to call set_task_cpu() on a blocking task we need
@@ -2339,6 +2326,12 @@
 
 	return cpu;
 }
+
+static void update_avg(u64 *avg, u64 sample)
+{
+	s64 diff = sample - *avg;
+	*avg += diff >> 3;
+}
 #endif
 
 /***
@@ -2360,16 +2353,13 @@
 {
 	int cpu, orig_cpu, this_cpu, success = 0;
 	unsigned long flags;
+	unsigned long en_flags = ENQUEUE_WAKEUP;
 	struct rq *rq;
 
-	if (!sched_feat(SYNC_WAKEUPS))
-		wake_flags &= ~WF_SYNC;
-
 	this_cpu = get_cpu();
 
 	smp_wmb();
 	rq = task_rq_lock(p, &flags);
-	update_rq_clock(rq);
 	if (!(p->state & state))
 		goto out;
 
@@ -2389,28 +2379,26 @@
 	 *
 	 * First fix up the nr_uninterruptible count:
 	 */
-	if (task_contributes_to_load(p))
-		rq->nr_uninterruptible--;
+	if (task_contributes_to_load(p)) {
+		if (likely(cpu_online(orig_cpu)))
+			rq->nr_uninterruptible--;
+		else
+			this_rq()->nr_uninterruptible--;
+	}
 	p->state = TASK_WAKING;
 
-	if (p->sched_class->task_waking)
+	if (p->sched_class->task_waking) {
 		p->sched_class->task_waking(rq, p);
-
-	__task_rq_unlock(rq);
-
-	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
-	if (cpu != orig_cpu) {
-		/*
-		 * Since we migrate the task without holding any rq->lock,
-		 * we need to be careful with task_rq_lock(), since that
-		 * might end up locking an invalid rq.
-		 */
-		set_task_cpu(p, cpu);
+		en_flags |= ENQUEUE_WAKING;
 	}
 
+	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
+	if (cpu != orig_cpu)
+		set_task_cpu(p, cpu);
+	__task_rq_unlock(rq);
+
 	rq = cpu_rq(cpu);
 	raw_spin_lock(&rq->lock);
-	update_rq_clock(rq);
 
 	/*
 	 * We migrated the task without holding either rq->lock, however
@@ -2438,34 +2426,18 @@
 
 out_activate:
 #endif /* CONFIG_SMP */
-	schedstat_inc(p, se.nr_wakeups);
+	schedstat_inc(p, se.statistics.nr_wakeups);
 	if (wake_flags & WF_SYNC)
-		schedstat_inc(p, se.nr_wakeups_sync);
+		schedstat_inc(p, se.statistics.nr_wakeups_sync);
 	if (orig_cpu != cpu)
-		schedstat_inc(p, se.nr_wakeups_migrate);
+		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
 	if (cpu == this_cpu)
-		schedstat_inc(p, se.nr_wakeups_local);
+		schedstat_inc(p, se.statistics.nr_wakeups_local);
 	else
-		schedstat_inc(p, se.nr_wakeups_remote);
-	activate_task(rq, p, 1);
+		schedstat_inc(p, se.statistics.nr_wakeups_remote);
+	activate_task(rq, p, en_flags);
 	success = 1;
 
-	/*
-	 * Only attribute actual wakeups done by this task.
-	 */
-	if (!in_interrupt()) {
-		struct sched_entity *se = &current->se;
-		u64 sample = se->sum_exec_runtime;
-
-		if (se->last_wakeup)
-			sample -= se->last_wakeup;
-		else
-			sample -= se->start_runtime;
-		update_avg(&se->avg_wakeup, sample);
-
-		se->last_wakeup = se->sum_exec_runtime;
-	}
-
 out_running:
 	trace_sched_wakeup(rq, p, success);
 	check_preempt_curr(rq, p, wake_flags);
@@ -2527,42 +2499,9 @@
 	p->se.sum_exec_runtime		= 0;
 	p->se.prev_sum_exec_runtime	= 0;
 	p->se.nr_migrations		= 0;
-	p->se.last_wakeup		= 0;
-	p->se.avg_overlap		= 0;
-	p->se.start_runtime		= 0;
-	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
 
 #ifdef CONFIG_SCHEDSTATS
-	p->se.wait_start			= 0;
-	p->se.wait_max				= 0;
-	p->se.wait_count			= 0;
-	p->se.wait_sum				= 0;
-
-	p->se.sleep_start			= 0;
-	p->se.sleep_max				= 0;
-	p->se.sum_sleep_runtime			= 0;
-
-	p->se.block_start			= 0;
-	p->se.block_max				= 0;
-	p->se.exec_max				= 0;
-	p->se.slice_max				= 0;
-
-	p->se.nr_migrations_cold		= 0;
-	p->se.nr_failed_migrations_affine	= 0;
-	p->se.nr_failed_migrations_running	= 0;
-	p->se.nr_failed_migrations_hot		= 0;
-	p->se.nr_forced_migrations		= 0;
-
-	p->se.nr_wakeups			= 0;
-	p->se.nr_wakeups_sync			= 0;
-	p->se.nr_wakeups_migrate		= 0;
-	p->se.nr_wakeups_local			= 0;
-	p->se.nr_wakeups_remote			= 0;
-	p->se.nr_wakeups_affine			= 0;
-	p->se.nr_wakeups_affine_attempts	= 0;
-	p->se.nr_wakeups_passive		= 0;
-	p->se.nr_wakeups_idle			= 0;
-
+	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 #endif
 
 	INIT_LIST_HEAD(&p->rt.run_list);
@@ -2583,11 +2522,11 @@
 
 	__sched_fork(p);
 	/*
-	 * We mark the process as waking here. This guarantees that
+	 * We mark the process as running here. This guarantees that
 	 * nobody will actually run it, and a signal or other external
 	 * event cannot wake it up and insert it on the runqueue either.
 	 */
-	p->state = TASK_WAKING;
+	p->state = TASK_RUNNING;
 
 	/*
 	 * Revert to default priority/policy on fork if requested.
@@ -2654,29 +2593,25 @@
 	int cpu __maybe_unused = get_cpu();
 
 #ifdef CONFIG_SMP
+	rq = task_rq_lock(p, &flags);
+	p->state = TASK_WAKING;
+
 	/*
 	 * Fork balancing, do it here and not earlier because:
 	 *  - cpus_allowed can change in the fork path
 	 *  - any previously selected cpu might disappear through hotplug
 	 *
-	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
-	 * ->cpus_allowed is stable, we have preemption disabled, meaning
-	 * cpu_online_mask is stable.
+	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
+	 * without people poking at ->cpus_allowed.
 	 */
-	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
+	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
 	set_task_cpu(p, cpu);
+
+	p->state = TASK_RUNNING;
+	task_rq_unlock(rq, &flags);
 #endif
 
-	/*
-	 * Since the task is not on the rq and we still have TASK_WAKING set
-	 * nobody else will migrate this task.
-	 */
-	rq = cpu_rq(cpu);
-	raw_spin_lock_irqsave(&rq->lock, flags);
-
-	BUG_ON(p->state != TASK_WAKING);
-	p->state = TASK_RUNNING;
-	update_rq_clock(rq);
+	rq = task_rq_lock(p, &flags);
 	activate_task(rq, p, 0);
 	trace_sched_wakeup_new(rq, p, 1);
 	check_preempt_curr(rq, p, WF_FORK);
@@ -3015,6 +2950,61 @@
 unsigned long avenrun[3];
 EXPORT_SYMBOL(avenrun);
 
+static long calc_load_fold_active(struct rq *this_rq)
+{
+	long nr_active, delta = 0;
+
+	nr_active = this_rq->nr_running;
+	nr_active += (long) this_rq->nr_uninterruptible;
+
+	if (nr_active != this_rq->calc_load_active) {
+		delta = nr_active - this_rq->calc_load_active;
+		this_rq->calc_load_active = nr_active;
+	}
+
+	return delta;
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
+ *
+ * When making the ILB scale, we should try to pull this in as well.
+ */
+static atomic_long_t calc_load_tasks_idle;
+
+static void calc_load_account_idle(struct rq *this_rq)
+{
+	long delta;
+
+	delta = calc_load_fold_active(this_rq);
+	if (delta)
+		atomic_long_add(delta, &calc_load_tasks_idle);
+}
+
+static long calc_load_fold_idle(void)
+{
+	long delta = 0;
+
+	/*
+	 * Its got a race, we don't care...
+	 */
+	if (atomic_long_read(&calc_load_tasks_idle))
+		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
+
+	return delta;
+}
+#else
+static void calc_load_account_idle(struct rq *this_rq)
+{
+}
+
+static inline long calc_load_fold_idle(void)
+{
+	return 0;
+}
+#endif
+
 /**
  * get_avenrun - get the load average array
  * @loads:	pointer to dest load array
@@ -3061,20 +3051,22 @@
 }
 
 /*
- * Either called from update_cpu_load() or from a cpu going idle
+ * Called from update_cpu_load() to periodically update this CPU's
+ * active count.
  */
 static void calc_load_account_active(struct rq *this_rq)
 {
-	long nr_active, delta;
+	long delta;
 
-	nr_active = this_rq->nr_running;
-	nr_active += (long) this_rq->nr_uninterruptible;
+	if (time_before(jiffies, this_rq->calc_load_update))
+		return;
 
-	if (nr_active != this_rq->calc_load_active) {
-		delta = nr_active - this_rq->calc_load_active;
-		this_rq->calc_load_active = nr_active;
+	delta  = calc_load_fold_active(this_rq);
+	delta += calc_load_fold_idle();
+	if (delta)
 		atomic_long_add(delta, &calc_load_tasks);
-	}
+
+	this_rq->calc_load_update += LOAD_FREQ;
 }
 
 /*
@@ -3106,10 +3098,7 @@
 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
 	}
 
-	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
-		this_rq->calc_load_update += LOAD_FREQ;
-		calc_load_account_active(this_rq);
-	}
+	calc_load_account_active(this_rq);
 }
 
 #ifdef CONFIG_SMP
@@ -3122,32 +3111,21 @@
 {
 	struct task_struct *p = current;
 	struct migration_req req;
-	int dest_cpu, this_cpu;
 	unsigned long flags;
 	struct rq *rq;
-
-again:
-	this_cpu = get_cpu();
-	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
-	if (dest_cpu == this_cpu) {
-		put_cpu();
-		return;
-	}
+	int dest_cpu;
 
 	rq = task_rq_lock(p, &flags);
-	put_cpu();
+	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
+	if (dest_cpu == smp_processor_id())
+		goto unlock;
 
 	/*
 	 * select_task_rq() can race against ->cpus_allowed
 	 */
-	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
-	    || unlikely(!cpu_active(dest_cpu))) {
-		task_rq_unlock(rq, &flags);
-		goto again;
-	}
-
-	/* force the process onto the specified CPU */
-	if (migrate_task(p, dest_cpu, &req)) {
+	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
+	    likely(cpu_active(dest_cpu)) &&
+	    migrate_task(p, dest_cpu, &req)) {
 		/* Need to wait for migration thread (might exit: take ref). */
 		struct task_struct *mt = rq->migration_thread;
 
@@ -3159,6 +3137,7 @@
 
 		return;
 	}
+unlock:
 	task_rq_unlock(rq, &flags);
 }
 
@@ -3630,23 +3609,9 @@
 
 static void put_prev_task(struct rq *rq, struct task_struct *prev)
 {
-	if (prev->state == TASK_RUNNING) {
-		u64 runtime = prev->se.sum_exec_runtime;
-
-		runtime -= prev->se.prev_sum_exec_runtime;
-		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
-
-		/*
-		 * In order to avoid avg_overlap growing stale when we are
-		 * indeed overlapping and hence not getting put to sleep, grow
-		 * the avg_overlap on preemption.
-		 *
-		 * We use the average preemption runtime because that
-		 * correlates to the amount of cache footprint a task can
-		 * build up.
-		 */
-		update_avg(&prev->se.avg_overlap, runtime);
-	}
+	if (prev->se.on_rq)
+		update_rq_clock(rq);
+	rq->skip_clock_update = 0;
 	prev->sched_class->put_prev_task(rq, prev);
 }
 
@@ -3709,14 +3674,13 @@
 		hrtick_clear(rq);
 
 	raw_spin_lock_irq(&rq->lock);
-	update_rq_clock(rq);
 	clear_tsk_need_resched(prev);
 
 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 		if (unlikely(signal_pending_state(prev->state, prev)))
 			prev->state = TASK_RUNNING;
 		else
-			deactivate_task(rq, prev, 1);
+			deactivate_task(rq, prev, DEQUEUE_SLEEP);
 		switch_count = &prev->nvcsw;
 	}
 
@@ -4266,7 +4230,6 @@
 	BUG_ON(prio < 0 || prio > MAX_PRIO);
 
 	rq = task_rq_lock(p, &flags);
-	update_rq_clock(rq);
 
 	oldprio = p->prio;
 	prev_class = p->sched_class;
@@ -4287,7 +4250,7 @@
 	if (running)
 		p->sched_class->set_curr_task(rq);
 	if (on_rq) {
-		enqueue_task(rq, p, 0, oldprio < prio);
+		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
 
 		check_class_changed(rq, p, prev_class, oldprio, running);
 	}
@@ -4309,7 +4272,6 @@
 	 * the task might be in the middle of scheduling on another CPU.
 	 */
 	rq = task_rq_lock(p, &flags);
-	update_rq_clock(rq);
 	/*
 	 * The RT priorities are set via sched_setscheduler(), but we still
 	 * allow the 'normal' nice value to be set - but as expected
@@ -4331,7 +4293,7 @@
 	delta = p->prio - old_prio;
 
 	if (on_rq) {
-		enqueue_task(rq, p, 0, false);
+		enqueue_task(rq, p, 0);
 		/*
 		 * If the task increased its priority or is running and
 		 * lowered its priority, then reschedule its CPU:
@@ -4592,7 +4554,6 @@
 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 		goto recheck;
 	}
-	update_rq_clock(rq);
 	on_rq = p->se.on_rq;
 	running = task_current(rq, p);
 	if (on_rq)
@@ -5358,7 +5319,18 @@
 	struct rq *rq;
 	int ret = 0;
 
+	/*
+	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
+	 * drop the rq->lock and still rely on ->cpus_allowed.
+	 */
+again:
+	while (task_is_waking(p))
+		cpu_relax();
 	rq = task_rq_lock(p, &flags);
+	if (task_is_waking(p)) {
+		task_rq_unlock(rq, &flags);
+		goto again;
+	}
 
 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 		ret = -EINVAL;
@@ -5516,30 +5488,29 @@
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
-
-static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
-{
-	int ret;
-
-	local_irq_disable();
-	ret = __migrate_task(p, src_cpu, dest_cpu);
-	local_irq_enable();
-	return ret;
-}
-
 /*
  * Figure out where task on dead CPU should go, use force if necessary.
  */
-static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
+void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
 {
-	int dest_cpu;
+	struct rq *rq = cpu_rq(dead_cpu);
+	int needs_cpu, uninitialized_var(dest_cpu);
+	unsigned long flags;
 
-again:
-	dest_cpu = select_fallback_rq(dead_cpu, p);
+	local_irq_save(flags);
 
-	/* It can have affinity changed while we were choosing. */
-	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
-		goto again;
+	raw_spin_lock(&rq->lock);
+	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
+	if (needs_cpu)
+		dest_cpu = select_fallback_rq(dead_cpu, p);
+	raw_spin_unlock(&rq->lock);
+	/*
+	 * It can only fail if we race with set_cpus_allowed(),
+	 * in the racer should migrate the task anyway.
+	 */
+	if (needs_cpu)
+		__migrate_task(p, dead_cpu, dest_cpu);
+	local_irq_restore(flags);
 }
 
 /*
@@ -5603,7 +5574,6 @@
 
 	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
 
-	update_rq_clock(rq);
 	activate_task(rq, p, 0);
 
 	raw_spin_unlock_irqrestore(&rq->lock, flags);
@@ -5658,7 +5628,6 @@
 	for ( ; ; ) {
 		if (!rq->nr_running)
 			break;
-		update_rq_clock(rq);
 		next = pick_next_task(rq);
 		if (!next)
 			break;
@@ -5934,7 +5903,6 @@
 
 	case CPU_DEAD:
 	case CPU_DEAD_FROZEN:
-		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
 		migrate_live_tasks(cpu);
 		rq = cpu_rq(cpu);
 		kthread_stop(rq->migration_thread);
@@ -5942,13 +5910,11 @@
 		rq->migration_thread = NULL;
 		/* Idle task back to normal (off runqueue, low prio) */
 		raw_spin_lock_irq(&rq->lock);
-		update_rq_clock(rq);
 		deactivate_task(rq, rq->idle, 0);
 		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
 		rq->idle->sched_class = &idle_sched_class;
 		migrate_dead_tasks(cpu);
 		raw_spin_unlock_irq(&rq->lock);
-		cpuset_unlock();
 		migrate_nr_uninterruptible(rq);
 		BUG_ON(rq->nr_running != 0);
 		calc_global_load_remove(rq);
@@ -6305,6 +6271,9 @@
 	struct rq *rq = cpu_rq(cpu);
 	struct sched_domain *tmp;
 
+	for (tmp = sd; tmp; tmp = tmp->parent)
+		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
+
 	/* Remove the sched domains which do not contribute to scheduling. */
 	for (tmp = sd; tmp; ) {
 		struct sched_domain *parent = tmp->parent;
@@ -7892,7 +7861,6 @@
 {
 	int on_rq;
 
-	update_rq_clock(rq);
 	on_rq = p->se.on_rq;
 	if (on_rq)
 		deactivate_task(rq, p, 0);
@@ -7919,9 +7887,9 @@
 
 		p->se.exec_start		= 0;
 #ifdef CONFIG_SCHEDSTATS
-		p->se.wait_start		= 0;
-		p->se.sleep_start		= 0;
-		p->se.block_start		= 0;
+		p->se.statistics.wait_start	= 0;
+		p->se.statistics.sleep_start	= 0;
+		p->se.statistics.block_start	= 0;
 #endif
 
 		if (!rt_task(p)) {
@@ -8254,8 +8222,6 @@
 
 	rq = task_rq_lock(tsk, &flags);
 
-	update_rq_clock(rq);
-
 	running = task_current(rq, tsk);
 	on_rq = tsk->se.on_rq;
 
@@ -8274,7 +8240,7 @@
 	if (unlikely(running))
 		tsk->sched_class->set_curr_task(rq);
 	if (on_rq)
-		enqueue_task(rq, tsk, 0, false);
+		enqueue_task(rq, tsk, 0);
 
 	task_rq_unlock(rq, &flags);
 }
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 9b49db1..9cf1baf 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -70,16 +70,16 @@
 	PN(se->vruntime);
 	PN(se->sum_exec_runtime);
 #ifdef CONFIG_SCHEDSTATS
-	PN(se->wait_start);
-	PN(se->sleep_start);
-	PN(se->block_start);
-	PN(se->sleep_max);
-	PN(se->block_max);
-	PN(se->exec_max);
-	PN(se->slice_max);
-	PN(se->wait_max);
-	PN(se->wait_sum);
-	P(se->wait_count);
+	PN(se->statistics.wait_start);
+	PN(se->statistics.sleep_start);
+	PN(se->statistics.block_start);
+	PN(se->statistics.sleep_max);
+	PN(se->statistics.block_max);
+	PN(se->statistics.exec_max);
+	PN(se->statistics.slice_max);
+	PN(se->statistics.wait_max);
+	PN(se->statistics.wait_sum);
+	P(se->statistics.wait_count);
 #endif
 	P(se->load.weight);
 #undef PN
@@ -104,7 +104,7 @@
 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 		SPLIT_NS(p->se.vruntime),
 		SPLIT_NS(p->se.sum_exec_runtime),
-		SPLIT_NS(p->se.sum_sleep_runtime));
+		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
 #else
 	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
 		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
@@ -173,11 +173,6 @@
 	task_group_path(tg, path, sizeof(path));
 
 	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
-#elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
-	{
-		uid_t uid = cfs_rq->tg->uid;
-		SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid);
-	}
 #else
 	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
 #endif
@@ -407,40 +402,38 @@
 	PN(se.exec_start);
 	PN(se.vruntime);
 	PN(se.sum_exec_runtime);
-	PN(se.avg_overlap);
-	PN(se.avg_wakeup);
 
 	nr_switches = p->nvcsw + p->nivcsw;
 
 #ifdef CONFIG_SCHEDSTATS
-	PN(se.wait_start);
-	PN(se.sleep_start);
-	PN(se.block_start);
-	PN(se.sleep_max);
-	PN(se.block_max);
-	PN(se.exec_max);
-	PN(se.slice_max);
-	PN(se.wait_max);
-	PN(se.wait_sum);
-	P(se.wait_count);
-	PN(se.iowait_sum);
-	P(se.iowait_count);
+	PN(se.statistics.wait_start);
+	PN(se.statistics.sleep_start);
+	PN(se.statistics.block_start);
+	PN(se.statistics.sleep_max);
+	PN(se.statistics.block_max);
+	PN(se.statistics.exec_max);
+	PN(se.statistics.slice_max);
+	PN(se.statistics.wait_max);
+	PN(se.statistics.wait_sum);
+	P(se.statistics.wait_count);
+	PN(se.statistics.iowait_sum);
+	P(se.statistics.iowait_count);
 	P(sched_info.bkl_count);
 	P(se.nr_migrations);
-	P(se.nr_migrations_cold);
-	P(se.nr_failed_migrations_affine);
-	P(se.nr_failed_migrations_running);
-	P(se.nr_failed_migrations_hot);
-	P(se.nr_forced_migrations);
-	P(se.nr_wakeups);
-	P(se.nr_wakeups_sync);
-	P(se.nr_wakeups_migrate);
-	P(se.nr_wakeups_local);
-	P(se.nr_wakeups_remote);
-	P(se.nr_wakeups_affine);
-	P(se.nr_wakeups_affine_attempts);
-	P(se.nr_wakeups_passive);
-	P(se.nr_wakeups_idle);
+	P(se.statistics.nr_migrations_cold);
+	P(se.statistics.nr_failed_migrations_affine);
+	P(se.statistics.nr_failed_migrations_running);
+	P(se.statistics.nr_failed_migrations_hot);
+	P(se.statistics.nr_forced_migrations);
+	P(se.statistics.nr_wakeups);
+	P(se.statistics.nr_wakeups_sync);
+	P(se.statistics.nr_wakeups_migrate);
+	P(se.statistics.nr_wakeups_local);
+	P(se.statistics.nr_wakeups_remote);
+	P(se.statistics.nr_wakeups_affine);
+	P(se.statistics.nr_wakeups_affine_attempts);
+	P(se.statistics.nr_wakeups_passive);
+	P(se.statistics.nr_wakeups_idle);
 
 	{
 		u64 avg_atom, avg_per_cpu;
@@ -491,31 +484,6 @@
 void proc_sched_set_task(struct task_struct *p)
 {
 #ifdef CONFIG_SCHEDSTATS
-	p->se.wait_max				= 0;
-	p->se.wait_sum				= 0;
-	p->se.wait_count			= 0;
-	p->se.iowait_sum			= 0;
-	p->se.iowait_count			= 0;
-	p->se.sleep_max				= 0;
-	p->se.sum_sleep_runtime			= 0;
-	p->se.block_max				= 0;
-	p->se.exec_max				= 0;
-	p->se.slice_max				= 0;
-	p->se.nr_migrations			= 0;
-	p->se.nr_migrations_cold		= 0;
-	p->se.nr_failed_migrations_affine	= 0;
-	p->se.nr_failed_migrations_running	= 0;
-	p->se.nr_failed_migrations_hot		= 0;
-	p->se.nr_forced_migrations		= 0;
-	p->se.nr_wakeups			= 0;
-	p->se.nr_wakeups_sync			= 0;
-	p->se.nr_wakeups_migrate		= 0;
-	p->se.nr_wakeups_local			= 0;
-	p->se.nr_wakeups_remote			= 0;
-	p->se.nr_wakeups_affine			= 0;
-	p->se.nr_wakeups_affine_attempts	= 0;
-	p->se.nr_wakeups_passive		= 0;
-	p->se.nr_wakeups_idle			= 0;
-	p->sched_info.bkl_count			= 0;
+	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 #endif
 }
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 5a5ea2c..cbd8b8a 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -35,8 +35,8 @@
  * (to see the precise effective timeslice length of your workload,
  *  run vmstat and monitor the context-switches (cs) field)
  */
-unsigned int sysctl_sched_latency = 5000000ULL;
-unsigned int normalized_sysctl_sched_latency = 5000000ULL;
+unsigned int sysctl_sched_latency = 6000000ULL;
+unsigned int normalized_sysctl_sched_latency = 6000000ULL;
 
 /*
  * The initial- and re-scaling of tunables is configurable
@@ -52,15 +52,15 @@
 
 /*
  * Minimal preemption granularity for CPU-bound tasks:
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
  */
-unsigned int sysctl_sched_min_granularity = 1000000ULL;
-unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
+unsigned int sysctl_sched_min_granularity = 2000000ULL;
+unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
 
 /*
  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  */
-static unsigned int sched_nr_latency = 5;
+static unsigned int sched_nr_latency = 3;
 
 /*
  * After fork, child runs first. If set to 0 (default) then
@@ -505,7 +505,8 @@
 {
 	unsigned long delta_exec_weighted;
 
-	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
+	schedstat_set(curr->statistics.exec_max,
+		      max((u64)delta_exec, curr->statistics.exec_max));
 
 	curr->sum_exec_runtime += delta_exec;
 	schedstat_add(cfs_rq, exec_clock, delta_exec);
@@ -548,7 +549,7 @@
 static inline void
 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
+	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 }
 
 /*
@@ -567,18 +568,18 @@
 static void
 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	schedstat_set(se->wait_max, max(se->wait_max,
-			rq_of(cfs_rq)->clock - se->wait_start));
-	schedstat_set(se->wait_count, se->wait_count + 1);
-	schedstat_set(se->wait_sum, se->wait_sum +
-			rq_of(cfs_rq)->clock - se->wait_start);
+	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
+			rq_of(cfs_rq)->clock - se->statistics.wait_start));
+	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
+	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
+			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 #ifdef CONFIG_SCHEDSTATS
 	if (entity_is_task(se)) {
 		trace_sched_stat_wait(task_of(se),
-			rq_of(cfs_rq)->clock - se->wait_start);
+			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 	}
 #endif
-	schedstat_set(se->wait_start, 0);
+	schedstat_set(se->statistics.wait_start, 0);
 }
 
 static inline void
@@ -657,39 +658,39 @@
 	if (entity_is_task(se))
 		tsk = task_of(se);
 
-	if (se->sleep_start) {
-		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
+	if (se->statistics.sleep_start) {
+		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
 
 		if ((s64)delta < 0)
 			delta = 0;
 
-		if (unlikely(delta > se->sleep_max))
-			se->sleep_max = delta;
+		if (unlikely(delta > se->statistics.sleep_max))
+			se->statistics.sleep_max = delta;
 
-		se->sleep_start = 0;
-		se->sum_sleep_runtime += delta;
+		se->statistics.sleep_start = 0;
+		se->statistics.sum_sleep_runtime += delta;
 
 		if (tsk) {
 			account_scheduler_latency(tsk, delta >> 10, 1);
 			trace_sched_stat_sleep(tsk, delta);
 		}
 	}
-	if (se->block_start) {
-		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
+	if (se->statistics.block_start) {
+		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
 
 		if ((s64)delta < 0)
 			delta = 0;
 
-		if (unlikely(delta > se->block_max))
-			se->block_max = delta;
+		if (unlikely(delta > se->statistics.block_max))
+			se->statistics.block_max = delta;
 
-		se->block_start = 0;
-		se->sum_sleep_runtime += delta;
+		se->statistics.block_start = 0;
+		se->statistics.sum_sleep_runtime += delta;
 
 		if (tsk) {
 			if (tsk->in_iowait) {
-				se->iowait_sum += delta;
-				se->iowait_count++;
+				se->statistics.iowait_sum += delta;
+				se->statistics.iowait_count++;
 				trace_sched_stat_iowait(tsk, delta);
 			}
 
@@ -737,20 +738,10 @@
 		vruntime += sched_vslice(cfs_rq, se);
 
 	/* sleeps up to a single latency don't count. */
-	if (!initial && sched_feat(FAIR_SLEEPERS)) {
+	if (!initial) {
 		unsigned long thresh = sysctl_sched_latency;
 
 		/*
-		 * Convert the sleeper threshold into virtual time.
-		 * SCHED_IDLE is a special sub-class.  We care about
-		 * fairness only relative to other SCHED_IDLE tasks,
-		 * all of which have the same weight.
-		 */
-		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
-				 task_of(se)->policy != SCHED_IDLE))
-			thresh = calc_delta_fair(thresh, se);
-
-		/*
 		 * Halve their sleep time's effect, to allow
 		 * for a gentler effect of sleepers:
 		 */
@@ -766,9 +757,6 @@
 	se->vruntime = vruntime;
 }
 
-#define ENQUEUE_WAKEUP	1
-#define ENQUEUE_MIGRATE 2
-
 static void
 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 {
@@ -776,7 +764,7 @@
 	 * Update the normalized vruntime before updating min_vruntime
 	 * through callig update_curr().
 	 */
-	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
+	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
 		se->vruntime += cfs_rq->min_vruntime;
 
 	/*
@@ -812,7 +800,7 @@
 }
 
 static void
-dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
+dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 {
 	/*
 	 * Update run-time statistics of the 'current'.
@@ -820,15 +808,15 @@
 	update_curr(cfs_rq);
 
 	update_stats_dequeue(cfs_rq, se);
-	if (sleep) {
+	if (flags & DEQUEUE_SLEEP) {
 #ifdef CONFIG_SCHEDSTATS
 		if (entity_is_task(se)) {
 			struct task_struct *tsk = task_of(se);
 
 			if (tsk->state & TASK_INTERRUPTIBLE)
-				se->sleep_start = rq_of(cfs_rq)->clock;
+				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
 			if (tsk->state & TASK_UNINTERRUPTIBLE)
-				se->block_start = rq_of(cfs_rq)->clock;
+				se->statistics.block_start = rq_of(cfs_rq)->clock;
 		}
 #endif
 	}
@@ -845,7 +833,7 @@
 	 * update can refer to the ->curr item and we need to reflect this
 	 * movement in our normalized position.
 	 */
-	if (!sleep)
+	if (!(flags & DEQUEUE_SLEEP))
 		se->vruntime -= cfs_rq->min_vruntime;
 }
 
@@ -912,7 +900,7 @@
 	 * when there are only lesser-weight tasks around):
 	 */
 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
-		se->slice_max = max(se->slice_max,
+		se->statistics.slice_max = max(se->statistics.slice_max,
 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 	}
 #endif
@@ -1054,16 +1042,10 @@
  * then put the task into the rbtree:
  */
 static void
-enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 {
 	struct cfs_rq *cfs_rq;
 	struct sched_entity *se = &p->se;
-	int flags = 0;
-
-	if (wakeup)
-		flags |= ENQUEUE_WAKEUP;
-	if (p->state == TASK_WAKING)
-		flags |= ENQUEUE_MIGRATE;
 
 	for_each_sched_entity(se) {
 		if (se->on_rq)
@@ -1081,18 +1063,18 @@
  * decreased. We remove the task from the rbtree and
  * update the fair scheduling stats:
  */
-static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
+static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 {
 	struct cfs_rq *cfs_rq;
 	struct sched_entity *se = &p->se;
 
 	for_each_sched_entity(se) {
 		cfs_rq = cfs_rq_of(se);
-		dequeue_entity(cfs_rq, se, sleep);
+		dequeue_entity(cfs_rq, se, flags);
 		/* Don't dequeue parent if it has other entities besides us */
 		if (cfs_rq->load.weight)
 			break;
-		sleep = 1;
+		flags |= DEQUEUE_SLEEP;
 	}
 
 	hrtick_update(rq);
@@ -1240,7 +1222,6 @@
 
 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 {
-	struct task_struct *curr = current;
 	unsigned long this_load, load;
 	int idx, this_cpu, prev_cpu;
 	unsigned long tl_per_task;
@@ -1255,18 +1236,6 @@
 	load	  = source_load(prev_cpu, idx);
 	this_load = target_load(this_cpu, idx);
 
-	if (sync) {
-	       if (sched_feat(SYNC_LESS) &&
-		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
-		    p->se.avg_overlap > sysctl_sched_migration_cost))
-		       sync = 0;
-	} else {
-		if (sched_feat(SYNC_MORE) &&
-		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
-		     p->se.avg_overlap < sysctl_sched_migration_cost))
-			sync = 1;
-	}
-
 	/*
 	 * If sync wakeup then subtract the (maximum possible)
 	 * effect of the currently running task from the load
@@ -1306,7 +1275,7 @@
 	if (sync && balanced)
 		return 1;
 
-	schedstat_inc(p, se.nr_wakeups_affine_attempts);
+	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
 	tl_per_task = cpu_avg_load_per_task(this_cpu);
 
 	if (balanced ||
@@ -1318,7 +1287,7 @@
 		 * there is no bad imbalance.
 		 */
 		schedstat_inc(sd, ttwu_move_affine);
-		schedstat_inc(p, se.nr_wakeups_affine);
+		schedstat_inc(p, se.statistics.nr_wakeups_affine);
 
 		return 1;
 	}
@@ -1406,29 +1375,48 @@
 /*
  * Try and locate an idle CPU in the sched_domain.
  */
-static int
-select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
+static int select_idle_sibling(struct task_struct *p, int target)
 {
 	int cpu = smp_processor_id();
 	int prev_cpu = task_cpu(p);
+	struct sched_domain *sd;
 	int i;
 
 	/*
-	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
-	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
-	 * always a better target than the current cpu.
+	 * If the task is going to be woken-up on this cpu and if it is
+	 * already idle, then it is the right target.
 	 */
-	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
+	if (target == cpu && idle_cpu(cpu))
+		return cpu;
+
+	/*
+	 * If the task is going to be woken-up on the cpu where it previously
+	 * ran and if it is currently idle, then it the right target.
+	 */
+	if (target == prev_cpu && idle_cpu(prev_cpu))
 		return prev_cpu;
 
 	/*
-	 * Otherwise, iterate the domain and find an elegible idle cpu.
+	 * Otherwise, iterate the domains and find an elegible idle cpu.
 	 */
-	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
-		if (!cpu_rq(i)->cfs.nr_running) {
-			target = i;
+	for_each_domain(target, sd) {
+		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
 			break;
+
+		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
+			if (idle_cpu(i)) {
+				target = i;
+				break;
+			}
 		}
+
+		/*
+		 * Lets stop looking for an idle sibling when we reached
+		 * the domain that spans the current cpu and prev_cpu.
+		 */
+		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
+		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
+			break;
 	}
 
 	return target;
@@ -1445,7 +1433,8 @@
  *
  * preempt must be disabled.
  */
-static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
+static int
+select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
 {
 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
 	int cpu = smp_processor_id();
@@ -1456,8 +1445,7 @@
 	int sync = wake_flags & WF_SYNC;
 
 	if (sd_flag & SD_BALANCE_WAKE) {
-		if (sched_feat(AFFINE_WAKEUPS) &&
-		    cpumask_test_cpu(cpu, &p->cpus_allowed))
+		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
 			want_affine = 1;
 		new_cpu = prev_cpu;
 	}
@@ -1491,34 +1479,13 @@
 		}
 
 		/*
-		 * While iterating the domains looking for a spanning
-		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
-		 * in cache sharing domains along the way.
+		 * If both cpu and prev_cpu are part of this domain,
+		 * cpu is a valid SD_WAKE_AFFINE target.
 		 */
-		if (want_affine) {
-			int target = -1;
-
-			/*
-			 * If both cpu and prev_cpu are part of this domain,
-			 * cpu is a valid SD_WAKE_AFFINE target.
-			 */
-			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
-				target = cpu;
-
-			/*
-			 * If there's an idle sibling in this domain, make that
-			 * the wake_affine target instead of the current cpu.
-			 */
-			if (tmp->flags & SD_SHARE_PKG_RESOURCES)
-				target = select_idle_sibling(p, tmp, target);
-
-			if (target >= 0) {
-				if (tmp->flags & SD_WAKE_AFFINE) {
-					affine_sd = tmp;
-					want_affine = 0;
-				}
-				cpu = target;
-			}
+		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
+		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
+			affine_sd = tmp;
+			want_affine = 0;
 		}
 
 		if (!want_sd && !want_affine)
@@ -1531,22 +1498,29 @@
 			sd = tmp;
 	}
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
 	if (sched_feat(LB_SHARES_UPDATE)) {
 		/*
 		 * Pick the largest domain to update shares over
 		 */
 		tmp = sd;
-		if (affine_sd && (!tmp ||
-				  cpumask_weight(sched_domain_span(affine_sd)) >
-				  cpumask_weight(sched_domain_span(sd))))
+		if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
 			tmp = affine_sd;
 
-		if (tmp)
+		if (tmp) {
+			raw_spin_unlock(&rq->lock);
 			update_shares(tmp);
+			raw_spin_lock(&rq->lock);
+		}
 	}
+#endif
 
-	if (affine_sd && wake_affine(affine_sd, p, sync))
-		return cpu;
+	if (affine_sd) {
+		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
+			return select_idle_sibling(p, cpu);
+		else
+			return select_idle_sibling(p, prev_cpu);
+	}
 
 	while (sd) {
 		int load_idx = sd->forkexec_idx;
@@ -1576,10 +1550,10 @@
 
 		/* Now try balancing at a lower domain level of new_cpu */
 		cpu = new_cpu;
-		weight = cpumask_weight(sched_domain_span(sd));
+		weight = sd->span_weight;
 		sd = NULL;
 		for_each_domain(cpu, tmp) {
-			if (weight <= cpumask_weight(sched_domain_span(tmp)))
+			if (weight <= tmp->span_weight)
 				break;
 			if (tmp->flags & sd_flag)
 				sd = tmp;
@@ -1591,63 +1565,26 @@
 }
 #endif /* CONFIG_SMP */
 
-/*
- * Adaptive granularity
- *
- * se->avg_wakeup gives the average time a task runs until it does a wakeup,
- * with the limit of wakeup_gran -- when it never does a wakeup.
- *
- * So the smaller avg_wakeup is the faster we want this task to preempt,
- * but we don't want to treat the preemptee unfairly and therefore allow it
- * to run for at least the amount of time we'd like to run.
- *
- * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
- *
- * NOTE: we use *nr_running to scale with load, this nicely matches the
- *       degrading latency on load.
- */
-static unsigned long
-adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
-{
-	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
-	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
-	u64 gran = 0;
-
-	if (this_run < expected_wakeup)
-		gran = expected_wakeup - this_run;
-
-	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
-}
-
 static unsigned long
 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
 {
 	unsigned long gran = sysctl_sched_wakeup_granularity;
 
-	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
-		gran = adaptive_gran(curr, se);
-
 	/*
 	 * Since its curr running now, convert the gran from real-time
 	 * to virtual-time in his units.
+	 *
+	 * By using 'se' instead of 'curr' we penalize light tasks, so
+	 * they get preempted easier. That is, if 'se' < 'curr' then
+	 * the resulting gran will be larger, therefore penalizing the
+	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
+	 * be smaller, again penalizing the lighter task.
+	 *
+	 * This is especially important for buddies when the leftmost
+	 * task is higher priority than the buddy.
 	 */
-	if (sched_feat(ASYM_GRAN)) {
-		/*
-		 * By using 'se' instead of 'curr' we penalize light tasks, so
-		 * they get preempted easier. That is, if 'se' < 'curr' then
-		 * the resulting gran will be larger, therefore penalizing the
-		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
-		 * be smaller, again penalizing the lighter task.
-		 *
-		 * This is especially important for buddies when the leftmost
-		 * task is higher priority than the buddy.
-		 */
-		if (unlikely(se->load.weight != NICE_0_LOAD))
-			gran = calc_delta_fair(gran, se);
-	} else {
-		if (unlikely(curr->load.weight != NICE_0_LOAD))
-			gran = calc_delta_fair(gran, curr);
-	}
+	if (unlikely(se->load.weight != NICE_0_LOAD))
+		gran = calc_delta_fair(gran, se);
 
 	return gran;
 }
@@ -1705,7 +1642,6 @@
 	struct task_struct *curr = rq->curr;
 	struct sched_entity *se = &curr->se, *pse = &p->se;
 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-	int sync = wake_flags & WF_SYNC;
 	int scale = cfs_rq->nr_running >= sched_nr_latency;
 
 	if (unlikely(rt_prio(p->prio)))
@@ -1738,14 +1674,6 @@
 	if (unlikely(curr->policy == SCHED_IDLE))
 		goto preempt;
 
-	if (sched_feat(WAKEUP_SYNC) && sync)
-		goto preempt;
-
-	if (sched_feat(WAKEUP_OVERLAP) &&
-			se->avg_overlap < sysctl_sched_migration_cost &&
-			pse->avg_overlap < sysctl_sched_migration_cost)
-		goto preempt;
-
 	if (!sched_feat(WAKEUP_PREEMPT))
 		return;
 
@@ -1844,13 +1772,13 @@
 	 * 3) are cache-hot on their current CPU.
 	 */
 	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
-		schedstat_inc(p, se.nr_failed_migrations_affine);
+		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
 		return 0;
 	}
 	*all_pinned = 0;
 
 	if (task_running(rq, p)) {
-		schedstat_inc(p, se.nr_failed_migrations_running);
+		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
 		return 0;
 	}
 
@@ -1866,14 +1794,14 @@
 #ifdef CONFIG_SCHEDSTATS
 		if (tsk_cache_hot) {
 			schedstat_inc(sd, lb_hot_gained[idle]);
-			schedstat_inc(p, se.nr_forced_migrations);
+			schedstat_inc(p, se.statistics.nr_forced_migrations);
 		}
 #endif
 		return 1;
 	}
 
 	if (tsk_cache_hot) {
-		schedstat_inc(p, se.nr_failed_migrations_hot);
+		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
 		return 0;
 	}
 	return 1;
@@ -2311,7 +2239,7 @@
 
 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
 {
-	unsigned long weight = cpumask_weight(sched_domain_span(sd));
+	unsigned long weight = sd->span_weight;
 	unsigned long smt_gain = sd->smt_gain;
 
 	smt_gain /= weight;
@@ -2344,7 +2272,7 @@
 
 static void update_cpu_power(struct sched_domain *sd, int cpu)
 {
-	unsigned long weight = cpumask_weight(sched_domain_span(sd));
+	unsigned long weight = sd->span_weight;
 	unsigned long power = SCHED_LOAD_SCALE;
 	struct sched_group *sdg = sd->groups;
 
@@ -3112,8 +3040,6 @@
 
 	/* move a task from busiest_rq to target_rq */
 	double_lock_balance(busiest_rq, target_rq);
-	update_rq_clock(busiest_rq);
-	update_rq_clock(target_rq);
 
 	/* Search for an sd spanning us and the target CPU. */
 	for_each_domain(target_cpu, sd) {
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index d5059fd..83c66e8 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,11 +1,4 @@
 /*
- * Disregards a certain amount of sleep time (sched_latency_ns) and
- * considers the task to be running during that period. This gives it
- * a service deficit on wakeup, allowing it to run sooner.
- */
-SCHED_FEAT(FAIR_SLEEPERS, 1)
-
-/*
  * Only give sleepers 50% of their service deficit. This allows
  * them to run sooner, but does not allow tons of sleepers to
  * rip the spread apart.
@@ -13,13 +6,6 @@
 SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
 
 /*
- * By not normalizing the sleep time, heavy tasks get an effective
- * longer period, and lighter task an effective shorter period they
- * are considered running.
- */
-SCHED_FEAT(NORMALIZED_SLEEPER, 0)
-
-/*
  * Place new tasks ahead so that they do not starve already running
  * tasks
  */
@@ -31,37 +17,6 @@
 SCHED_FEAT(WAKEUP_PREEMPT, 1)
 
 /*
- * Compute wakeup_gran based on task behaviour, clipped to
- *  [0, sched_wakeup_gran_ns]
- */
-SCHED_FEAT(ADAPTIVE_GRAN, 1)
-
-/*
- * When converting the wakeup granularity to virtual time, do it such
- * that heavier tasks preempting a lighter task have an edge.
- */
-SCHED_FEAT(ASYM_GRAN, 1)
-
-/*
- * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS.
- */
-SCHED_FEAT(WAKEUP_SYNC, 0)
-
-/*
- * Wakeup preempt based on task behaviour. Tasks that do not overlap
- * don't get preempted.
- */
-SCHED_FEAT(WAKEUP_OVERLAP, 0)
-
-/*
- * Use the SYNC wakeup hint, pipes and the likes use this to indicate
- * the remote end is likely to consume the data we just wrote, and
- * therefore has cache benefit from being placed on the same cpu, see
- * also AFFINE_WAKEUPS.
- */
-SCHED_FEAT(SYNC_WAKEUPS, 1)
-
-/*
  * Based on load and program behaviour, see if it makes sense to place
  * a newly woken task on the same cpu as the task that woke it --
  * improve cache locality. Typically used with SYNC wakeups as
@@ -70,16 +25,6 @@
 SCHED_FEAT(AFFINE_WAKEUPS, 1)
 
 /*
- * Weaken SYNC hint based on overlap
- */
-SCHED_FEAT(SYNC_LESS, 1)
-
-/*
- * Add SYNC hint based on overlap
- */
-SCHED_FEAT(SYNC_MORE, 0)
-
-/*
  * Prefer to schedule the task we woke last (assuming it failed
  * wakeup-preemption), since its likely going to consume data we
  * touched, increases cache locality.
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index a8a6d8a..9fa0f40 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -6,7 +6,8 @@
  */
 
 #ifdef CONFIG_SMP
-static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
+static int
+select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
 {
 	return task_cpu(p); /* IDLE tasks as never migrated */
 }
@@ -22,8 +23,7 @@
 static struct task_struct *pick_next_task_idle(struct rq *rq)
 {
 	schedstat_inc(rq, sched_goidle);
-	/* adjust the active tasks as we might go into a long sleep */
-	calc_load_account_active(rq);
+	calc_load_account_idle(rq);
 	return rq->idle;
 }
 
@@ -32,7 +32,7 @@
  * message if some code attempts to do it:
  */
 static void
-dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep)
+dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
 {
 	raw_spin_unlock_irq(&rq->lock);
 	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index b5b920a..8afb953 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -613,7 +613,7 @@
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
 
-	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
+	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
 
 	curr->se.sum_exec_runtime += delta_exec;
 	account_group_exec_runtime(curr, delta_exec);
@@ -888,20 +888,20 @@
  * Adding/removing a task to/from a priority array:
  */
 static void
-enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 {
 	struct sched_rt_entity *rt_se = &p->rt;
 
-	if (wakeup)
+	if (flags & ENQUEUE_WAKEUP)
 		rt_se->timeout = 0;
 
-	enqueue_rt_entity(rt_se, head);
+	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
 
 	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
 		enqueue_pushable_task(rq, p);
 }
 
-static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 {
 	struct sched_rt_entity *rt_se = &p->rt;
 
@@ -948,10 +948,9 @@
 #ifdef CONFIG_SMP
 static int find_lowest_rq(struct task_struct *task);
 
-static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
+static int
+select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
 {
-	struct rq *rq = task_rq(p);
-
 	if (sd_flag != SD_BALANCE_WAKE)
 		return smp_processor_id();
 
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index f992762..f25735a 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -262,6 +262,9 @@
 		goto end;
 	}
 
+	if (nohz_ratelimit(cpu))
+		goto end;
+
 	ts->idle_calls++;
 	/* Read jiffies and the time when jiffies were updated last */
 	do {
diff --git a/kernel/user.c b/kernel/user.c
index 766467b..8e1c8c0 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -16,7 +16,6 @@
 #include <linux/interrupt.h>
 #include <linux/module.h>
 #include <linux/user_namespace.h>
-#include "cred-internals.h"
 
 struct user_namespace init_user_ns = {
 	.kref = {
@@ -137,9 +136,7 @@
 	struct hlist_head *hashent = uidhashentry(ns, uid);
 	struct user_struct *up, *new;
 
-	/* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
-	 * atomic.
-	 */
+	/* Make uid_hash_find() + uid_hash_insert() atomic. */
 	spin_lock_irq(&uidhash_lock);
 	up = uid_hash_find(uid, hashent);
 	spin_unlock_irq(&uidhash_lock);
@@ -161,11 +158,6 @@
 		spin_lock_irq(&uidhash_lock);
 		up = uid_hash_find(uid, hashent);
 		if (up) {
-			/* This case is not possible when CONFIG_USER_SCHED
-			 * is defined, since we serialize alloc_uid() using
-			 * uids_mutex. Hence no need to call
-			 * sched_destroy_user() or remove_user_sysfs_dir().
-			 */
 			key_put(new->uid_keyring);
 			key_put(new->session_keyring);
 			kmem_cache_free(uid_cachep, new);
@@ -178,8 +170,6 @@
 
 	return up;
 
-	put_user_ns(new->user_ns);
-	kmem_cache_free(uid_cachep, new);
 out_unlock:
 	return NULL;
 }