[media] DRX-K: Initial check-in

Driver for the DRX-K DVB-C/T demodulator.

Signed-off-by: Ralph Metzler <rjkm@metzlerbros.de>
Signed-off-by: Oliver Endriss <o.endriss@gmx.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
diff --git a/drivers/media/dvb/frontends/drxk_hard.c b/drivers/media/dvb/frontends/drxk_hard.c
new file mode 100644
index 0000000..e6b1499
--- /dev/null
+++ b/drivers/media/dvb/frontends/drxk_hard.c
@@ -0,0 +1,5016 @@
+/*
+ * drxk_hard: DRX-K DVB-C/T demodulator driver
+ *
+ * Copyright (C) 2010-2011 Digital Devices GmbH
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 only, as published by the Free Software Foundation.
+ *
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA
+ * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/firmware.h>
+#include <linux/i2c.h>
+#include <linux/version.h>
+#include <asm/div64.h>
+
+#include "dvb_frontend.h"
+#include "drxk.h"
+#include "drxk_hard.h"
+
+static int PowerDownDVBT(struct drxk_state *state, bool setPowerMode);
+static int PowerDownQAM(struct drxk_state *state);
+static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode);
+static int SetQAMStandard(struct drxk_state *state,enum OperationMode oMode);
+static int SetQAM(struct drxk_state *state,u16 IntermediateFreqkHz,
+		  s32 tunerFreqOffset);
+static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode);
+static int DVBTStart(struct drxk_state *state);
+static int SetDVBT (struct drxk_state *state,u16 IntermediateFreqkHz,
+		    s32 tunerFreqOffset);
+static int GetQAMLockStatus(struct drxk_state *state, u32 *pLockStatus);
+static int GetDVBTLockStatus(struct drxk_state *state, u32 *pLockStatus);
+static int SwitchAntennaToQAM(struct drxk_state *state);
+static int SwitchAntennaToDVBT(struct drxk_state *state);
+
+static bool IsDVBT(struct drxk_state *state)
+{
+	return state->m_OperationMode == OM_DVBT;
+}
+
+static bool IsQAM(struct drxk_state *state)
+{
+	return state->m_OperationMode == OM_QAM_ITU_A ||
+		state->m_OperationMode == OM_QAM_ITU_B ||
+		state->m_OperationMode == OM_QAM_ITU_C;
+}
+
+bool IsA1WithPatchCode(struct drxk_state *state)
+{
+	return state->m_DRXK_A1_PATCH_CODE;
+}
+
+bool IsA1WithRomCode(struct drxk_state *state)
+{
+	return state->m_DRXK_A1_ROM_CODE;
+}
+
+#define NOA1ROM 0
+
+#ifndef CHK_ERROR
+    #define CHK_ERROR(s) if ((status = s) < 0) break
+#endif
+
+#define DRXDAP_FASI_SHORT_FORMAT(addr) (((addr) & 0xFC30FF80) == 0)
+#define DRXDAP_FASI_LONG_FORMAT(addr)  (((addr) & 0xFC30FF80) != 0)
+
+#define DEFAULT_MER_83  165
+#define DEFAULT_MER_93  250
+
+#ifndef DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH
+#define DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH (0x02)
+#endif
+
+#ifndef DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH
+#define DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH (0x03)
+#endif
+
+#ifndef DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH
+#define DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH (0x06)
+#endif
+
+#define DEFAULT_DRXK_MPEG_LOCK_TIMEOUT 700
+#define DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT 500
+
+#ifndef DRXK_KI_RAGC_ATV
+#define DRXK_KI_RAGC_ATV   4
+#endif
+#ifndef DRXK_KI_IAGC_ATV
+#define DRXK_KI_IAGC_ATV   6
+#endif
+#ifndef DRXK_KI_DAGC_ATV
+#define DRXK_KI_DAGC_ATV   7
+#endif
+
+#ifndef DRXK_KI_RAGC_QAM
+#define DRXK_KI_RAGC_QAM   3
+#endif
+#ifndef DRXK_KI_IAGC_QAM
+#define DRXK_KI_IAGC_QAM   4
+#endif
+#ifndef DRXK_KI_DAGC_QAM
+#define DRXK_KI_DAGC_QAM   7
+#endif
+#ifndef DRXK_KI_RAGC_DVBT
+#define DRXK_KI_RAGC_DVBT  (IsA1WithPatchCode(state) ? 3 : 2)
+#endif
+#ifndef DRXK_KI_IAGC_DVBT
+#define DRXK_KI_IAGC_DVBT  (IsA1WithPatchCode(state) ? 4 : 2)
+#endif
+#ifndef DRXK_KI_DAGC_DVBT
+#define DRXK_KI_DAGC_DVBT  (IsA1WithPatchCode(state) ? 10 : 7)
+#endif
+
+#ifndef DRXK_AGC_DAC_OFFSET
+#define DRXK_AGC_DAC_OFFSET (0x800)
+#endif
+
+#ifndef DRXK_BANDWIDTH_8MHZ_IN_HZ
+#define DRXK_BANDWIDTH_8MHZ_IN_HZ  (0x8B8249L)
+#endif
+
+#ifndef DRXK_BANDWIDTH_7MHZ_IN_HZ
+#define DRXK_BANDWIDTH_7MHZ_IN_HZ  (0x7A1200L)
+#endif
+
+#ifndef DRXK_BANDWIDTH_6MHZ_IN_HZ
+#define DRXK_BANDWIDTH_6MHZ_IN_HZ  (0x68A1B6L)
+#endif
+
+#ifndef DRXK_QAM_SYMBOLRATE_MAX
+#define DRXK_QAM_SYMBOLRATE_MAX         (7233000)
+#endif
+
+#define DRXK_BL_ROM_OFFSET_TAPS_DVBT    56
+#define DRXK_BL_ROM_OFFSET_TAPS_ITU_A   64
+#define DRXK_BL_ROM_OFFSET_TAPS_ITU_C   0x5FE0
+#define DRXK_BL_ROM_OFFSET_TAPS_BG      24
+#define DRXK_BL_ROM_OFFSET_TAPS_DKILLP  32
+#define DRXK_BL_ROM_OFFSET_TAPS_NTSC    40
+#define DRXK_BL_ROM_OFFSET_TAPS_FM      48
+#define DRXK_BL_ROM_OFFSET_UCODE        0
+
+#define DRXK_BLC_TIMEOUT                100
+
+#define DRXK_BLCC_NR_ELEMENTS_TAPS      2
+#define DRXK_BLCC_NR_ELEMENTS_UCODE     6
+
+#define DRXK_BLDC_NR_ELEMENTS_TAPS      28
+
+#ifndef DRXK_OFDM_NE_NOTCH_WIDTH
+#define DRXK_OFDM_NE_NOTCH_WIDTH             (4)
+#endif
+
+#define DRXK_QAM_SL_SIG_POWER_QAM16       (40960)
+#define DRXK_QAM_SL_SIG_POWER_QAM32       (20480)
+#define DRXK_QAM_SL_SIG_POWER_QAM64       (43008)
+#define DRXK_QAM_SL_SIG_POWER_QAM128      (20992)
+#define DRXK_QAM_SL_SIG_POWER_QAM256      (43520)
+
+inline u32 MulDiv32(u32 a, u32 b, u32 c)
+{
+	u64 tmp64;
+
+	tmp64 = (u64)a * (u64)b;
+	do_div(tmp64, c);
+
+	return (u32) tmp64;
+}
+
+inline u32 Frac28a(u32 a, u32 c)
+{
+	int i = 0;
+	u32 Q1 = 0;
+	u32 R0 = 0;
+
+	R0 = (a % c) << 4; /* 32-28 == 4 shifts possible at max */
+	Q1 = a / c;      /* integer part, only the 4 least significant bits
+			  will be visible in the result */
+
+	/* division using radix 16, 7 nibbles in the result */
+	for (i = 0; i < 7; i++) {
+		Q1 = (Q1 << 4) | (R0 / c);
+		R0 = (R0 % c) << 4;
+	}
+	/* rounding */
+	if ((R0 >> 3) >= c)
+		Q1++;
+
+	return Q1;
+}
+
+static u32 Log10Times100(u32 x)
+{
+	static const u8 scale = 15;
+	static const u8 indexWidth = 5;
+	u8  i = 0;
+	u32 y = 0;
+	u32 d = 0;
+	u32 k = 0;
+	u32 r = 0;
+	/*
+	  log2lut[n] = (1<<scale) * 200 * log2(1.0 + ((1.0/(1<<INDEXWIDTH)) * n))
+	  0 <= n < ((1<<INDEXWIDTH)+1)
+	*/
+
+	static const u32 log2lut[] = {
+		0, /* 0.000000 */
+		290941, /* 290941.300628 */
+		573196, /* 573196.476418 */
+		847269, /* 847269.179851 */
+		1113620, /* 1113620.489452 */
+		1372674, /* 1372673.576986 */
+		1624818, /* 1624817.752104 */
+		1870412, /* 1870411.981536 */
+		2109788, /* 2109787.962654 */
+		2343253, /* 2343252.817465 */
+		2571091, /* 2571091.461923 */
+		2793569, /* 2793568.696416 */
+		3010931, /* 3010931.055901 */
+		3223408, /* 3223408.452106 */
+		3431216, /* 3431215.635215 */
+		3634553, /* 3634553.498355 */
+		3833610, /* 3833610.244726 */
+		4028562, /* 4028562.434393 */
+		4219576, /* 4219575.925308 */
+		4406807, /* 4406806.721144 */
+		4590402, /* 4590401.736809 */
+		4770499, /* 4770499.491025 */
+		4947231, /* 4947230.734179 */
+		5120719, /* 5120719.018555 */
+		5291081, /* 5291081.217197 */
+		5458428, /* 5458427.996830 */
+		5622864, /* 5622864.249668 */
+		5784489, /* 5784489.488298 */
+		5943398, /* 5943398.207380 */
+		6099680, /* 6099680.215452 */
+		6253421, /* 6253420.939751 */
+		6404702, /* 6404701.706649 */
+		6553600, /* 6553600.000000 */
+	};
+
+
+	if (x == 0)
+		return (0);
+
+	/* Scale x (normalize) */
+	/* computing y in log(x/y) = log(x) - log(y) */
+	if ((x & ((0xffffffff) << (scale + 1))) == 0) {
+		for (k = scale; k > 0; k--) {
+			if (x & (((u32)1) << scale))
+				break;
+			x <<= 1;
+		}
+	} else {
+		for (k = scale; k < 31 ; k++) {
+			if ((x & (((u32)(-1)) << (scale+1))) == 0)
+				break;
+			x >>= 1;
+      }
+	}
+	/*
+	  Now x has binary point between bit[scale] and bit[scale-1]
+	  and 1.0 <= x < 2.0 */
+
+	/* correction for divison: log(x) = log(x/y)+log(y) */
+	y = k * ((((u32)1) << scale) * 200);
+
+	/* remove integer part */
+	x &= ((((u32)1) << scale)-1);
+	/* get index */
+	i = (u8) (x >> (scale - indexWidth));
+	/* compute delta (x - a) */
+	d = x & ((((u32)1) << (scale - indexWidth)) - 1);
+	/* compute log, multiplication (d* (..)) must be within range ! */
+	y += log2lut[i] +
+		((d * (log2lut[i + 1] - log2lut[i])) >> (scale - indexWidth));
+	/* Conver to log10() */
+	y /= 108853; /* (log2(10) << scale) */
+	r = (y >> 1);
+	/* rounding */
+	if (y & ((u32)1))
+		r++;
+	return (r);
+}
+
+/****************************************************************************/
+/* I2C **********************************************************************/
+/****************************************************************************/
+
+static int i2c_read1(struct i2c_adapter *adapter, u8 adr, u8 *val)
+{
+	struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD,
+				   .buf  = val,  .len   = 1 }};
+	return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
+}
+
+static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
+{
+	struct i2c_msg msg =
+		{.addr = adr, .flags = 0, .buf = data, .len = len};
+
+	if (i2c_transfer(adap, &msg, 1) != 1) {
+		printk("i2c_write error\n");
+		return -1;
+	}
+	return 0;
+}
+
+static int i2c_read(struct i2c_adapter *adap,
+		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
+{
+	struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
+				     .buf = msg, .len = len},
+				   { .addr = adr, .flags = I2C_M_RD,
+				     .buf = answ, .len = alen } };
+	if (i2c_transfer(adap, msgs, 2) != 2) {
+		printk("i2c_read error\n");
+		return -1;
+	}
+	return 0;
+}
+
+static int Read16(struct drxk_state *state, u32 reg, u16 *data, u8 flags)
+{
+	u8 adr=state->demod_address, mm1[4], mm2[2], len;
+#ifdef I2C_LONG_ADR
+	flags |= 0xC0;
+#endif
+	if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
+		mm1[0] = (((reg << 1) & 0xFF) | 0x01);
+		mm1[1] = ((reg >> 16) & 0xFF);
+		mm1[2] = ((reg >> 24) & 0xFF) | flags;
+		mm1[3] = ((reg >> 7) & 0xFF);
+		len = 4;
+	} else {
+		mm1[0] = ((reg << 1) & 0xFF);
+		mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
+		len = 2;
+	}
+	if (i2c_read(state->i2c, adr, mm1, len, mm2, 2) < 0)
+		return -1;
+	if (data)
+		*data = mm2[0] | (mm2[1] << 8);
+	return 0;
+}
+
+static int Read16_0(struct drxk_state *state, u32 reg, u16 *data)
+{
+	return Read16(state, reg, data, 0);
+}
+
+static int Read32(struct drxk_state *state, u32 reg, u32 *data, u8 flags)
+{
+	u8 adr = state->demod_address, mm1[4], mm2[4], len;
+#ifdef I2C_LONG_ADR
+	flags |= 0xC0;
+#endif
+	if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
+		mm1[0] = (((reg << 1) & 0xFF) | 0x01);
+		mm1[1] = ((reg >> 16) & 0xFF);
+		mm1[2] = ((reg >> 24) & 0xFF) | flags;
+		mm1[3] = ((reg >> 7) & 0xFF);
+		len = 4;
+	} else {
+		mm1[0] = ((reg << 1) & 0xFF);
+		mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
+		len = 2;
+	}
+	if (i2c_read(state->i2c, adr, mm1, len, mm2, 4) < 0)
+		return -1;
+	if (data)
+		*data = mm2[0] | (mm2[1] << 8) |
+			(mm2[2] << 16) | (mm2[3] << 24);
+	return 0;
+}
+
+static int Write16(struct drxk_state *state, u32 reg, u16 data, u8 flags)
+{
+	u8 adr = state->demod_address, mm[6], len;
+#ifdef I2C_LONG_ADR
+	flags |= 0xC0;
+#endif
+	if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
+		mm[0] = (((reg << 1) & 0xFF) | 0x01);
+		mm[1] = ((reg >> 16) & 0xFF);
+		mm[2] = ((reg >> 24) & 0xFF) | flags;
+		mm[3] = ((reg >> 7) & 0xFF);
+		len = 4;
+	} else {
+		mm[0] = ((reg << 1) & 0xFF);
+		mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
+		len = 2;
+	}
+	mm[len] = data & 0xff;
+	mm[len+1] = (data >>8) & 0xff;
+	if (i2c_write(state->i2c, adr, mm, len + 2) < 0)
+		return -1;
+	return 0;
+}
+
+static int Write16_0(struct drxk_state *state, u32 reg, u16 data)
+{
+	return Write16(state, reg, data, 0);
+}
+
+static int Write32(struct drxk_state *state, u32 reg, u32 data, u8 flags)
+{
+	u8 adr = state->demod_address, mm[8], len;
+#ifdef I2C_LONG_ADR
+	flags |= 0xC0;
+#endif
+	if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
+		mm[0] = (((reg << 1) & 0xFF) | 0x01);
+		mm[1] = ((reg >> 16) & 0xFF);
+		mm[2] = ((reg >> 24) & 0xFF) | flags;
+		mm[3] = ((reg >> 7) & 0xFF);
+		len = 4;
+	} else {
+		mm[0] = ((reg << 1) & 0xFF);
+		mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
+		len = 2;
+	}
+	mm[len] = data & 0xff;
+	mm[len+1] = (data >> 8) & 0xff;
+	mm[len+2] = (data >> 16) & 0xff;
+	mm[len+3] = (data >> 24) & 0xff;
+	if (i2c_write(state->i2c, adr, mm, len+4) < 0)
+		return -1;
+	return 0;
+}
+
+static int WriteBlock(struct drxk_state *state, u32 Address,
+		      const int BlockSize, const u8 pBlock[], u8 Flags)
+{
+	int status = 0, BlkSize = BlockSize;
+#ifdef I2C_LONG_ADR
+	Flags |= 0xC0;
+#endif
+	while (BlkSize >  0) {
+		int Chunk = BlkSize > state->m_ChunkSize ?
+			state->m_ChunkSize : BlkSize ;
+		u8 *AdrBuf = &state->Chunk[0];
+		u32 AdrLength = 0;
+
+		if (DRXDAP_FASI_LONG_FORMAT(Address) || (Flags != 0))	{
+			AdrBuf[0] =  (((Address << 1) & 0xFF) | 0x01);
+			AdrBuf[1] =  ((Address >> 16) & 0xFF);
+			AdrBuf[2] =  ((Address >> 24) & 0xFF);
+			AdrBuf[3] =  ((Address >> 7) & 0xFF);
+			AdrBuf[2] |= Flags;
+			AdrLength = 4;
+			if (Chunk == state->m_ChunkSize)
+				Chunk -= 2;
+		} else	{
+			AdrBuf[0] = ((Address << 1) & 0xFF);
+			AdrBuf[1] = (((Address >> 16) & 0x0F) |
+				     ((Address >> 18) & 0xF0));
+			AdrLength = 2;
+		}
+		memcpy(&state->Chunk[AdrLength], pBlock, Chunk);
+		status = i2c_write(state->i2c, state->demod_address,
+				   &state->Chunk[0], Chunk+AdrLength);
+		if (status<0) {
+			printk("I2C Write error\n");
+			break;
+		}
+		pBlock += Chunk;
+		Address += (Chunk >> 1);
+		BlkSize -= Chunk;
+	}
+	return  status;
+}
+
+#ifndef DRXK_MAX_RETRIES_POWERUP
+#define DRXK_MAX_RETRIES_POWERUP 20
+#endif
+
+int PowerUpDevice(struct drxk_state *state)
+{
+	int status;
+	u8 data = 0;
+	u16 retryCount = 0;
+
+	status = i2c_read1(state->i2c, state->demod_address, &data);
+	if (status<0)
+		do {
+			data = 0;
+			if (i2c_write(state->i2c,
+				      state->demod_address, &data, 1) < 0)
+				printk("powerup failed\n");
+			msleep(10);
+			retryCount++ ;
+		} while (i2c_read1(state->i2c,
+				   state->demod_address, &data) < 0 &&
+			 (retryCount < DRXK_MAX_RETRIES_POWERUP));
+	if (retryCount >= DRXK_MAX_RETRIES_POWERUP)
+		return -1;
+	do {
+		/* Make sure all clk domains are active */
+		CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A,
+				    SIO_CC_PWD_MODE_LEVEL_NONE));
+		CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A,
+				    SIO_CC_UPDATE_KEY));
+		/* Enable pll lock tests */
+		CHK_ERROR(Write16_0(state, SIO_CC_PLL_LOCK__A, 1));
+		state->m_currentPowerMode = DRX_POWER_UP;
+	} while (0);
+	return status;
+}
+
+
+static int init_state(struct drxk_state *state)
+{
+	u32 ulVSBIfAgcMode           = DRXK_AGC_CTRL_AUTO;
+	u32 ulVSBIfAgcOutputLevel    = 0;
+	u32 ulVSBIfAgcMinLevel       = 0;
+	u32 ulVSBIfAgcMaxLevel       = 0x7FFF;
+	u32 ulVSBIfAgcSpeed          = 3;
+
+	u32 ulVSBRfAgcMode           = DRXK_AGC_CTRL_AUTO;
+	u32 ulVSBRfAgcOutputLevel    = 0;
+	u32 ulVSBRfAgcMinLevel       = 0;
+	u32 ulVSBRfAgcMaxLevel       = 0x7FFF;
+	u32 ulVSBRfAgcSpeed          = 3;
+	u32 ulVSBRfAgcTop            = 9500;
+	u32 ulVSBRfAgcCutOffCurrent  = 4000;
+
+	u32 ulATVIfAgcMode           = DRXK_AGC_CTRL_AUTO;
+	u32 ulATVIfAgcOutputLevel    = 0;
+	u32 ulATVIfAgcMinLevel       = 0;
+	u32 ulATVIfAgcMaxLevel       = 0;
+	u32 ulATVIfAgcSpeed          = 3;
+
+	u32 ulATVRfAgcMode           = DRXK_AGC_CTRL_OFF;
+	u32 ulATVRfAgcOutputLevel    = 0;
+	u32 ulATVRfAgcMinLevel       = 0;
+	u32 ulATVRfAgcMaxLevel       = 0;
+	u32 ulATVRfAgcTop            = 9500;
+	u32 ulATVRfAgcCutOffCurrent  = 4000;
+	u32 ulATVRfAgcSpeed          = 3;
+
+	u32 ulQual83 = DEFAULT_MER_83;
+	u32 ulQual93 = DEFAULT_MER_93;
+
+	u32 ulDVBTStaticTSClock = 1;
+	u32 ulDVBCStaticTSClock = 1;
+
+	u32 ulMpegLockTimeOut = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
+	u32 ulDemodLockTimeOut = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
+
+	/* io_pad_cfg register (8 bit reg.) MSB bit is 1 (default value) */
+	/* io_pad_cfg_mode output mode is drive always */
+	/* io_pad_cfg_drive is set to power 2 (23 mA) */
+	u32 ulGPIOCfg = 0x0113;
+	u32 ulGPIO    = 0;
+	u32 ulSerialMode = 1;
+	u32 ulInvertTSClock = 0;
+	u32 ulTSDataStrength = DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH;
+	u32 ulTSClockkStrength = DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH;
+	u32 ulDVBTBitrate = 50000000;
+	u32 ulDVBCBitrate = DRXK_QAM_SYMBOLRATE_MAX * 8;
+
+	u32 ulInsertRSByte = 0;
+
+	u32 ulRfMirror = 1;
+	u32 ulPowerDown = 0;
+
+	u32 ulAntennaDVBT = 1;
+	u32 ulAntennaDVBC = 0;
+	u32 ulAntennaSwitchDVBTDVBC = 0;
+
+	state->m_hasLNA = false;
+	state->m_hasDVBT= false;
+	state->m_hasDVBC= false;
+	state->m_hasATV= false;
+	state->m_hasOOB = false;
+	state->m_hasAudio = false;
+
+	state->m_ChunkSize = 124;
+
+	state->m_oscClockFreq = 0;
+	state->m_smartAntInverted = false;
+	state->m_bPDownOpenBridge = false;
+
+	/* real system clock frequency in kHz */
+	state->m_sysClockFreq     = 151875;
+	/* Timing div, 250ns/Psys */
+	/* Timing div, = (delay (nano seconds) * sysclk (kHz))/ 1000 */
+	state->m_HICfgTimingDiv = ((state->m_sysClockFreq / 1000) *
+				   HI_I2C_DELAY) / 1000;
+	/* Clipping */
+	if (state->m_HICfgTimingDiv > SIO_HI_RA_RAM_PAR_2_CFG_DIV__M)
+		state->m_HICfgTimingDiv = SIO_HI_RA_RAM_PAR_2_CFG_DIV__M;
+	state->m_HICfgWakeUpKey = (state->demod_address << 1);
+	/* port/bridge/power down ctrl */
+	state->m_HICfgCtrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
+
+	state->m_bPowerDown = (ulPowerDown != 0);
+
+	state->m_DRXK_A1_PATCH_CODE = false;
+	state->m_DRXK_A1_ROM_CODE = false;
+	state->m_DRXK_A2_ROM_CODE = false;
+	state->m_DRXK_A3_ROM_CODE = false;
+	state->m_DRXK_A2_PATCH_CODE = false;
+	state->m_DRXK_A3_PATCH_CODE = false;
+
+	/* Init AGC and PGA parameters */
+	/* VSB IF */
+	state->m_vsbIfAgcCfg.ctrlMode          = (ulVSBIfAgcMode);
+	state->m_vsbIfAgcCfg.outputLevel       = (ulVSBIfAgcOutputLevel);
+	state->m_vsbIfAgcCfg.minOutputLevel    = (ulVSBIfAgcMinLevel);
+	state->m_vsbIfAgcCfg.maxOutputLevel    = (ulVSBIfAgcMaxLevel);
+	state->m_vsbIfAgcCfg.speed             = (ulVSBIfAgcSpeed);
+	state->m_vsbPgaCfg = 140;
+
+	/* VSB RF */
+	state->m_vsbRfAgcCfg.ctrlMode          = (ulVSBRfAgcMode);
+	state->m_vsbRfAgcCfg.outputLevel       = (ulVSBRfAgcOutputLevel);
+	state->m_vsbRfAgcCfg.minOutputLevel    = (ulVSBRfAgcMinLevel);
+	state->m_vsbRfAgcCfg.maxOutputLevel    = (ulVSBRfAgcMaxLevel);
+	state->m_vsbRfAgcCfg.speed             = (ulVSBRfAgcSpeed);
+	state->m_vsbRfAgcCfg.top               = (ulVSBRfAgcTop);
+	state->m_vsbRfAgcCfg.cutOffCurrent     = (ulVSBRfAgcCutOffCurrent);
+	state->m_vsbPreSawCfg.reference        = 0x07;
+	state->m_vsbPreSawCfg.usePreSaw        = true;
+
+	state->m_Quality83percent = DEFAULT_MER_83;
+	state->m_Quality93percent = DEFAULT_MER_93;
+	if (ulQual93 <= 500 && ulQual83 < ulQual93) {
+		state->m_Quality83percent = ulQual83;
+		state->m_Quality93percent = ulQual93;
+	}
+
+	/* ATV IF */
+	state->m_atvIfAgcCfg.ctrlMode          = (ulATVIfAgcMode);
+	state->m_atvIfAgcCfg.outputLevel       = (ulATVIfAgcOutputLevel);
+	state->m_atvIfAgcCfg.minOutputLevel    = (ulATVIfAgcMinLevel);
+	state->m_atvIfAgcCfg.maxOutputLevel    = (ulATVIfAgcMaxLevel);
+	state->m_atvIfAgcCfg.speed             = (ulATVIfAgcSpeed);
+
+	/* ATV RF */
+	state->m_atvRfAgcCfg.ctrlMode          = (ulATVRfAgcMode);
+	state->m_atvRfAgcCfg.outputLevel       = (ulATVRfAgcOutputLevel);
+	state->m_atvRfAgcCfg.minOutputLevel    = (ulATVRfAgcMinLevel);
+	state->m_atvRfAgcCfg.maxOutputLevel    = (ulATVRfAgcMaxLevel);
+	state->m_atvRfAgcCfg.speed             = (ulATVRfAgcSpeed);
+	state->m_atvRfAgcCfg.top               = (ulATVRfAgcTop);
+	state->m_atvRfAgcCfg.cutOffCurrent     = (ulATVRfAgcCutOffCurrent);
+	state->m_atvPreSawCfg.reference        = 0x04;
+	state->m_atvPreSawCfg.usePreSaw        = true;
+
+
+	/* DVBT RF */
+	state->m_dvbtRfAgcCfg.ctrlMode          = DRXK_AGC_CTRL_OFF;
+	state->m_dvbtRfAgcCfg.outputLevel       = 0;
+	state->m_dvbtRfAgcCfg.minOutputLevel    = 0;
+	state->m_dvbtRfAgcCfg.maxOutputLevel    = 0xFFFF;
+	state->m_dvbtRfAgcCfg.top               = 0x2100;
+	state->m_dvbtRfAgcCfg.cutOffCurrent     = 4000;
+	state->m_dvbtRfAgcCfg.speed             = 1;
+
+
+	/* DVBT IF */
+	state->m_dvbtIfAgcCfg.ctrlMode          = DRXK_AGC_CTRL_AUTO;
+	state->m_dvbtIfAgcCfg.outputLevel       = 0;
+	state->m_dvbtIfAgcCfg.minOutputLevel    = 0;
+	state->m_dvbtIfAgcCfg.maxOutputLevel    = 9000;
+	state->m_dvbtIfAgcCfg.top               = 13424;
+	state->m_dvbtIfAgcCfg.cutOffCurrent     = 0;
+	state->m_dvbtIfAgcCfg.speed             = 3;
+	state->m_dvbtIfAgcCfg.FastClipCtrlDelay = 30;
+	state->m_dvbtIfAgcCfg.IngainTgtMax      = 30000;
+	//    state->m_dvbtPgaCfg                     = 140;
+
+	state->m_dvbtPreSawCfg.reference        = 4;
+	state->m_dvbtPreSawCfg.usePreSaw        = false;
+
+	/* QAM RF */
+	state->m_qamRfAgcCfg.ctrlMode          = DRXK_AGC_CTRL_OFF;
+	state->m_qamRfAgcCfg.outputLevel       = 0;
+	state->m_qamRfAgcCfg.minOutputLevel    = 6023;
+	state->m_qamRfAgcCfg.maxOutputLevel    = 27000;
+	state->m_qamRfAgcCfg.top               = 0x2380;
+	state->m_qamRfAgcCfg.cutOffCurrent     = 4000;
+	state->m_qamRfAgcCfg.speed             = 3;
+
+	/* QAM IF */
+	state->m_qamIfAgcCfg.ctrlMode          = DRXK_AGC_CTRL_AUTO;
+	state->m_qamIfAgcCfg.outputLevel       = 0;
+	state->m_qamIfAgcCfg.minOutputLevel    = 0;
+	state->m_qamIfAgcCfg.maxOutputLevel    = 9000;
+	state->m_qamIfAgcCfg.top               = 0x0511;
+	state->m_qamIfAgcCfg.cutOffCurrent     = 0;
+	state->m_qamIfAgcCfg.speed             = 3;
+	state->m_qamIfAgcCfg.IngainTgtMax      = 5119;
+	state->m_qamIfAgcCfg.FastClipCtrlDelay = 50;
+
+	state->m_qamPgaCfg                     = 140;
+	state->m_qamPreSawCfg.reference        = 4;
+	state->m_qamPreSawCfg.usePreSaw        = false;
+
+	state->m_OperationMode = OM_NONE;
+	state->m_DrxkState = DRXK_UNINITIALIZED;
+
+	/* MPEG output configuration */
+	state->m_enableMPEGOutput = true; /* If TRUE; enable MPEG ouput */
+	state->m_insertRSByte = false;    /* If TRUE; insert RS byte */
+	state->m_enableParallel = true;   /* If TRUE;
+					     parallel out otherwise serial */
+	state->m_invertDATA = false;      /* If TRUE; invert DATA signals */
+	state->m_invertERR  = false;      /* If TRUE; invert ERR signal */
+	state->m_invertSTR  = false;      /* If TRUE; invert STR signals */
+	state->m_invertVAL  = false;      /* If TRUE; invert VAL signals */
+	state->m_invertCLK  =
+		(ulInvertTSClock != 0);   /* If TRUE; invert CLK signals */
+	state->m_DVBTStaticCLK = (ulDVBTStaticTSClock != 0);
+	state->m_DVBCStaticCLK =
+		(ulDVBCStaticTSClock != 0);
+	/* If TRUE; static MPEG clockrate will be used;
+	   otherwise clockrate will adapt to the bitrate of the TS */
+
+	state->m_DVBTBitrate = ulDVBTBitrate;
+	state->m_DVBCBitrate = ulDVBCBitrate;
+
+	state->m_TSDataStrength = (ulTSDataStrength & 0x07);
+	state->m_TSClockkStrength = (ulTSClockkStrength & 0x07);
+
+	/* Maximum bitrate in b/s in case static clockrate is selected */
+	state->m_mpegTsStaticBitrate = 19392658;
+	state->m_disableTEIhandling = false;
+
+	if (ulInsertRSByte)
+		state->m_insertRSByte = true;
+
+	state->m_MpegLockTimeOut = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
+	if (ulMpegLockTimeOut < 10000)
+		state->m_MpegLockTimeOut = ulMpegLockTimeOut;
+	state->m_DemodLockTimeOut = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
+	if (ulDemodLockTimeOut < 10000)
+		state->m_DemodLockTimeOut = ulDemodLockTimeOut;
+
+	// QAM defaults
+	state->m_Constellation     = DRX_CONSTELLATION_AUTO;
+	state->m_qamInterleaveMode = DRXK_QAM_I12_J17;
+	state->m_fecRsPlen         = 204*8;    /* fecRsPlen  annex A*/
+	state->m_fecRsPrescale     = 1;
+
+	state->m_sqiSpeed = DRXK_DVBT_SQI_SPEED_MEDIUM;
+	state->m_agcFastClipCtrlDelay = 0;
+
+	state->m_GPIOCfg = (ulGPIOCfg);
+	state->m_GPIO    = (ulGPIO == 0 ? 0 : 1);
+
+	state->m_AntennaDVBT = (ulAntennaDVBT == 0 ? 0 : 1);
+	state->m_AntennaDVBC = (ulAntennaDVBC == 0 ? 0 : 1);
+	state->m_AntennaSwitchDVBTDVBC =
+		(ulAntennaSwitchDVBTDVBC == 0 ? 0 : 1);
+
+	state->m_bPowerDown = false;
+	state->m_currentPowerMode = DRX_POWER_DOWN;
+
+	state->m_enableParallel = (ulSerialMode == 0);
+
+	state->m_rfmirror = (ulRfMirror == 0);
+	state->m_IfAgcPol = false;
+	return 0;
+}
+
+static int DRXX_Open(struct drxk_state *state)
+{
+	int status = 0;
+	u32 jtag = 0;
+	u16 bid = 0;
+	u16 key = 0;
+
+	do {
+		/* stop lock indicator process */
+		CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
+				     SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+		/* Check device id */
+		CHK_ERROR(Read16(state, SIO_TOP_COMM_KEY__A, &key, 0));
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A,
+				    SIO_TOP_COMM_KEY_KEY));
+		CHK_ERROR(Read32(state, SIO_TOP_JTAGID_LO__A, &jtag, 0));
+		CHK_ERROR(Read16(state, SIO_PDR_UIO_IN_HI__A, &bid, 0));
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, key));
+	} while(0);
+	return status;
+}
+
+static int GetDeviceCapabilities(struct drxk_state *state)
+{
+	u16 sioPdrOhwCfg   = 0;
+	u32 sioTopJtagidLo = 0;
+	int status;
+
+	do {
+		/* driver 0.9.0 */
+		/* stop lock indicator process */
+		CHK_ERROR(Write16_0(state,  SCU_RAM_GPIO__A,
+				    SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0xFABA));
+		CHK_ERROR(Read16(state, SIO_PDR_OHW_CFG__A, &sioPdrOhwCfg, 0));
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0x0000));
+
+		switch ((sioPdrOhwCfg & SIO_PDR_OHW_CFG_FREF_SEL__M)) {
+		case 0:
+			/* ignore (bypass ?) */
+			break;
+		case 1:
+			/* 27 MHz */
+			state->m_oscClockFreq = 27000;
+			break;
+		case 2:
+			/* 20.25 MHz */
+			state->m_oscClockFreq = 20250;
+			break;
+		case 3:
+			/* 4 MHz */
+			state->m_oscClockFreq = 20250;
+			break;
+		default:
+			return -1;
+		}
+		/*
+		  Determine device capabilities
+		  Based on pinning v14
+		*/
+		CHK_ERROR(Read32(state, SIO_TOP_JTAGID_LO__A,
+				 &sioTopJtagidLo, 0));
+		/* driver 0.9.0 */
+		switch((sioTopJtagidLo >> 29) & 0xF) {
+		case 0:
+			state->m_deviceSpin = DRXK_SPIN_A1;
+			break;
+		case 2:
+			state->m_deviceSpin = DRXK_SPIN_A2;
+			break;
+		case 3:
+			state->m_deviceSpin = DRXK_SPIN_A3;
+			break;
+		default:
+			state->m_deviceSpin = DRXK_SPIN_UNKNOWN;
+			status = -1;
+			break;
+		}
+		switch ((sioTopJtagidLo>>12)&0xFF) {
+		case 0x13:
+			/* typeId = DRX3913K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = false;
+			state->m_hasAudio = false;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = true;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = false;
+			state->m_hasGPIO1 = false;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x15:
+			/* typeId = DRX3915K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = false;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = false;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x16:
+			/* typeId = DRX3916K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = false;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = false;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x18:
+			/* typeId = DRX3918K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = true;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = false;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x21:
+			/* typeId = DRX3921K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = true;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = true;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x23:
+			/* typeId = DRX3923K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = true;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = true;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x25:
+			/* typeId = DRX3925K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = true;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = true;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		case 0x26:
+			/* typeId = DRX3926K_TYPE_ID */
+			state->m_hasLNA   = false;
+			state->m_hasOOB   = false;
+			state->m_hasATV   = true;
+			state->m_hasAudio = false;
+			state->m_hasDVBT  = true;
+			state->m_hasDVBC  = true;
+			state->m_hasSAWSW = true;
+			state->m_hasGPIO2 = true;
+			state->m_hasGPIO1 = true;
+			state->m_hasIRQN  = false;
+			break;
+		default:
+			printk("DeviceID not supported = %02x\n",
+			       ((sioTopJtagidLo>>12)&0xFF));
+			status = -1;
+			break;
+		}
+	} while(0);
+	return status;
+}
+
+static int HI_Command(struct drxk_state *state, u16 cmd, u16 *pResult)
+{
+	int status;
+	bool powerdown_cmd;
+
+	//printk("%s\n", __FUNCTION__);
+
+	/* Write command */
+	status = Write16_0(state, SIO_HI_RA_RAM_CMD__A, cmd);
+	if (status < 0)
+		return status;
+	if (cmd == SIO_HI_RA_RAM_CMD_RESET)
+		msleep(1);
+
+	powerdown_cmd =
+		(bool) ((cmd == SIO_HI_RA_RAM_CMD_CONFIG) &&
+			((state->m_HICfgCtrl) &
+			 SIO_HI_RA_RAM_PAR_5_CFG_SLEEP__M) ==
+			SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ);
+	if (powerdown_cmd == false) {
+		/* Wait until command rdy */
+		u32 retryCount = 0;
+		u16 waitCmd;
+
+		do {
+			msleep(1);
+			retryCount += 1;
+			status = Read16(state, SIO_HI_RA_RAM_CMD__A,
+					&waitCmd, 0);
+		} while ((status < 0) &&
+			 (retryCount < DRXK_MAX_RETRIES) && (waitCmd != 0));
+
+		if (status == 0)
+			status = Read16(state, SIO_HI_RA_RAM_RES__A,
+					pResult, 0);
+	}
+	return status;
+}
+
+static int HI_CfgCommand(struct drxk_state *state)
+{
+	int status;
+
+	mutex_lock(&state->mutex);
+	do {
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_6__A,
+				    state->m_HICfgTimeout));
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_5__A,
+				    state->m_HICfgCtrl));
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_4__A,
+				    state->m_HICfgWakeUpKey));
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_3__A,
+				    state->m_HICfgBridgeDelay));
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_2__A,
+				    state->m_HICfgTimingDiv));
+		CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_1__A,
+				    SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY));
+		CHK_ERROR(HI_Command(state, SIO_HI_RA_RAM_CMD_CONFIG, 0));
+
+		state->m_HICfgCtrl &= ~SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
+	} while(0);
+	mutex_unlock(&state->mutex);
+	return status;
+}
+
+static int InitHI(struct drxk_state *state)
+{
+	state->m_HICfgWakeUpKey = (state->demod_address<<1);
+	state->m_HICfgTimeout = 0x96FF;
+	/* port/bridge/power down ctrl */
+	state->m_HICfgCtrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
+	return  HI_CfgCommand(state);
+}
+
+static int MPEGTSConfigurePins(struct drxk_state *state, bool mpegEnable)
+{
+	int status = -1;
+	u16 sioPdrMclkCfg      = 0;
+	u16 sioPdrMdxCfg       = 0;
+
+	do {
+		/* stop lock indicator process */
+		CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
+				    SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+
+		/*  MPEG TS pad configuration */
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A,   0xFABA));
+
+		if (mpegEnable == false) {
+			/*  Set MPEG TS pads to inputmode */
+			CHK_ERROR(Write16_0(state,
+					    SIO_PDR_MSTRT_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state,
+					    SIO_PDR_MERR_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state,
+					    SIO_PDR_MCLK_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state,
+					    SIO_PDR_MVAL_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD0_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A, 0x0000));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A, 0x0000));
+		} else {
+			/* Enable MPEG output */
+			sioPdrMdxCfg =
+				((state->m_TSDataStrength <<
+				  SIO_PDR_MD0_CFG_DRIVE__B) | 0x0003);
+			sioPdrMclkCfg = ((state->m_TSClockkStrength <<
+					  SIO_PDR_MCLK_CFG_DRIVE__B) | 0x0003);
+
+			CHK_ERROR(Write16_0(state, SIO_PDR_MSTRT_CFG__A,
+					    sioPdrMdxCfg));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MERR_CFG__A,
+					    0x0000));    // Disable
+			CHK_ERROR(Write16_0(state, SIO_PDR_MVAL_CFG__A,
+					    0x0000));    // Disable
+			if (state->m_enableParallel == true) {
+				/* paralel -> enable MD1 to MD7 */
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A,
+						    sioPdrMdxCfg));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A,
+						    sioPdrMdxCfg));
+			} else {
+				sioPdrMdxCfg  = ((state->m_TSDataStrength <<
+						  SIO_PDR_MD0_CFG_DRIVE__B) |
+						 0x0003);
+				/* serial -> disable MD1 to MD7 */
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A,
+						    0x0000));
+				CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A,
+						    0x0000));
+			}
+			CHK_ERROR(Write16_0(state, SIO_PDR_MCLK_CFG__A,
+					    sioPdrMclkCfg));
+			CHK_ERROR(Write16_0(state, SIO_PDR_MD0_CFG__A,
+					    sioPdrMdxCfg));
+		}
+		/*  Enable MB output over MPEG pads and ctl input */
+		CHK_ERROR(Write16_0(state, SIO_PDR_MON_CFG__A, 0x0000));
+		/*  Write nomagic word to enable pdr reg write */
+		CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0x0000));
+	} while(0);
+	return status;
+}
+
+static int MPEGTSDisable(struct drxk_state *state)
+{
+	return MPEGTSConfigurePins(state, false);
+}
+
+static int BLChainCmd(struct drxk_state *state,
+		      u16 romOffset, u16 nrOfElements, u32 timeOut)
+{
+	u16 blStatus = 0;
+	int status;
+	unsigned long end;
+
+	mutex_lock(&state->mutex);
+	do {
+		CHK_ERROR(Write16_0(state, SIO_BL_MODE__A,
+				    SIO_BL_MODE_CHAIN));
+		CHK_ERROR(Write16_0(state, SIO_BL_CHAIN_ADDR__A,
+				    romOffset));
+		CHK_ERROR(Write16_0(state, SIO_BL_CHAIN_LEN__A,
+				    nrOfElements));
+		CHK_ERROR(Write16_0(state, SIO_BL_ENABLE__A,
+				    SIO_BL_ENABLE_ON));
+		end=jiffies+msecs_to_jiffies(timeOut);
+
+		do {
+			msleep(1);
+			CHK_ERROR(Read16(state, SIO_BL_STATUS__A,
+					 &blStatus, 0));
+		} while ((blStatus == 0x1) &&
+			 ((time_is_after_jiffies(end))));
+		if (blStatus == 0x1) {
+			printk("SIO not ready\n");
+			mutex_unlock(&state->mutex);
+			return -1;
+		}
+	} while(0);
+	mutex_unlock(&state->mutex);
+	return status;
+}
+
+
+static int DownloadMicrocode(struct drxk_state *state,
+			     const u8 pMCImage[],
+			     u32 Length)
+{
+	const u8 *pSrc = pMCImage;
+	u16 Flags;
+	u16 Drain;
+	u32 Address;
+	u16 nBlocks;
+	u16 BlockSize;
+	u16 BlockCRC;
+	u32 offset = 0;
+	u32 i;
+	int status;
+
+	/* down the drain (we don care about MAGIC_WORD) */
+	Drain = (pSrc[0] << 8) | pSrc[1];
+	pSrc += sizeof(u16); offset += sizeof(u16);
+	nBlocks = (pSrc[0] << 8) | pSrc[1];
+	pSrc += sizeof(u16); offset += sizeof(u16);
+
+	for (i = 0; i < nBlocks; i += 1) {
+		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
+			(pSrc[2] << 8) | pSrc[3];
+		pSrc += sizeof(u32); offset += sizeof(u32);
+
+		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
+		pSrc += sizeof(u16); offset += sizeof(u16);
+
+		Flags = (pSrc[0] << 8) | pSrc[1];
+		pSrc += sizeof(u16); offset += sizeof(u16);
+
+		BlockCRC = (pSrc[0] << 8) | pSrc[1];
+		pSrc += sizeof(u16); offset += sizeof(u16);
+		status = WriteBlock(state, Address, BlockSize, pSrc, 0);
+		if (status<0)
+			break;
+		pSrc += BlockSize;
+		offset += BlockSize;
+	}
+	return status;
+}
+
+static int DVBTEnableOFDMTokenRing(struct drxk_state *state, bool enable)
+{
+	int status;
+	u16 data          = 0;
+	u16 desiredCtrl   = SIO_OFDM_SH_OFDM_RING_ENABLE_ON;
+	u16 desiredStatus = SIO_OFDM_SH_OFDM_RING_STATUS_ENABLED;
+	unsigned long end;
+
+	if (enable == false) {
+		desiredCtrl   = SIO_OFDM_SH_OFDM_RING_ENABLE_OFF;
+		desiredStatus = SIO_OFDM_SH_OFDM_RING_STATUS_DOWN;
+	}
+
+	status = (Read16_0(state,  SIO_OFDM_SH_OFDM_RING_STATUS__A, &data));
+
+	if (data == desiredStatus) {
+		/* tokenring already has correct status */
+		return status;
+	}
+	/* Disable/enable dvbt tokenring bridge   */
+	status = Write16_0(state,SIO_OFDM_SH_OFDM_RING_ENABLE__A, desiredCtrl);
+
+	end=jiffies+msecs_to_jiffies(DRXK_OFDM_TR_SHUTDOWN_TIMEOUT);
+	do
+		CHK_ERROR(Read16_0(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data));
+	while ((data != desiredStatus)  &&
+	       ((time_is_after_jiffies(end))));
+	if (data != desiredStatus) {
+		printk("SIO not ready\n");
+		return -1;
+	}
+	return status;
+}
+
+static int MPEGTSStop(struct drxk_state *state)
+{
+	int status = 0;
+	u16 fecOcSncMode = 0;
+	u16 fecOcIprMode = 0;
+
+	do {
+		/* Gracefull shutdown (byte boundaries) */
+		CHK_ERROR(Read16_0(state, FEC_OC_SNC_MODE__A, &fecOcSncMode));
+		fecOcSncMode |= FEC_OC_SNC_MODE_SHUTDOWN__M;
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_MODE__A, fecOcSncMode));
+
+		/* Suppress MCLK during absence of data */
+		CHK_ERROR(Read16_0(state, FEC_OC_IPR_MODE__A, &fecOcIprMode));
+		fecOcIprMode |= FEC_OC_IPR_MODE_MCLK_DIS_DAT_ABS__M;
+		CHK_ERROR(Write16_0(state, FEC_OC_IPR_MODE__A, fecOcIprMode));
+	} while (0);
+	return status;
+}
+
+static int scu_command(struct drxk_state *state,
+		       u16 cmd, u8 parameterLen,
+		       u16 * parameter, u8 resultLen, u16 * result)
+{
+#if (SCU_RAM_PARAM_0__A - SCU_RAM_PARAM_15__A) != 15
+#error DRXK register mapping no longer compatible with this routine!
+#endif
+	u16 curCmd = 0;
+	int status;
+	unsigned long end;
+
+	if ((cmd == 0) || ((parameterLen > 0) && (parameter == NULL)) ||
+	    ((resultLen > 0) && (result == NULL)))
+		return -1;
+
+	mutex_lock(&state->mutex);
+	do {
+		/* assume that the command register is ready
+		   since it is checked afterwards */
+		u8 buffer[34];
+		int cnt = 0, ii;
+
+		for (ii=parameterLen-1; ii >= 0; ii -= 1) {
+			buffer[cnt++] = (parameter[ii] & 0xFF);
+			buffer[cnt++] = ((parameter[ii] >> 8) & 0xFF);
+		}
+		buffer[cnt++] = (cmd & 0xFF);
+		buffer[cnt++] = ((cmd >> 8) & 0xFF);
+
+		WriteBlock(state, SCU_RAM_PARAM_0__A -
+			   (parameterLen-1), cnt, buffer, 0x00);
+		/* Wait until SCU has processed command */
+		end=jiffies+msecs_to_jiffies(DRXK_MAX_WAITTIME);
+		do {
+			msleep(1);
+			CHK_ERROR(Read16_0(state, SCU_RAM_COMMAND__A, &curCmd));
+		} while (! (curCmd == DRX_SCU_READY) &&
+			 (time_is_after_jiffies(end)));
+		if (curCmd != DRX_SCU_READY) {
+			printk("SCU not ready\n");
+			mutex_unlock(&state->mutex);
+			return -1;
+		}
+		/* read results */
+		if ((resultLen > 0) && (result != NULL)) {
+			s16 err;
+			int ii;
+
+			for(ii=resultLen-1; ii >= 0; ii -= 1) {
+				CHK_ERROR(Read16_0(state,
+						   SCU_RAM_PARAM_0__A - ii,
+						   &result[ii]));
+			}
+
+			/* Check if an error was reported by SCU */
+			err = (s16)result[0];
+
+			/* check a few fixed error codes */
+			if (err == SCU_RESULT_UNKSTD) {
+				printk("SCU_RESULT_UNKSTD\n");
+				mutex_unlock(&state->mutex);
+				return -1;
+			} else if (err == SCU_RESULT_UNKCMD) {
+				printk("SCU_RESULT_UNKCMD\n");
+				mutex_unlock(&state->mutex);
+				return -1;
+			}
+			/* here it is assumed that negative means error,
+			   and positive no error */
+			else if (err < 0) {
+				printk("%s ERROR\n", __FUNCTION__);
+				mutex_unlock(&state->mutex);
+				return -1;
+			}
+		}
+	} while(0);
+	mutex_unlock(&state->mutex);
+	if (status<0)
+	{
+		printk("%s: status = %d\n", __FUNCTION__, status);
+	}
+
+	return status;
+}
+
+static int SetIqmAf(struct drxk_state *state, bool active)
+{
+	u16 data = 0;
+	int status;
+
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",active));
+	//printk("%s\n", __FUNCTION__);
+
+	do
+	{
+		/* Configure IQM */
+		CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));;
+		if (!active) {
+			data |= (IQM_AF_STDBY_STDBY_ADC_STANDBY
+				 | IQM_AF_STDBY_STDBY_AMP_STANDBY
+				 | IQM_AF_STDBY_STDBY_PD_STANDBY
+				 | IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY
+				 | IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY
+				);
+			//   break;
+			//default:
+			//   break;
+			//}
+		} else /* active */ {
+			data &= ((~IQM_AF_STDBY_STDBY_ADC_STANDBY)
+				 & (~IQM_AF_STDBY_STDBY_AMP_STANDBY)
+				 & (~IQM_AF_STDBY_STDBY_PD_STANDBY)
+				 & (~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY)
+				 & (~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY)
+				);
+			//   break;
+			//default:
+			//   break;
+			//}
+		}
+		CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
+	}while(0);
+	return status;
+}
+
+static int CtrlPowerMode(struct drxk_state *state,
+			 pDRXPowerMode_t     mode)
+{
+	int status = 0;
+	u16            sioCcPwdMode = 0;
+
+	//printk("%s\n", __FUNCTION__);
+	/* Check arguments */
+	if (mode == NULL)
+		return -1;
+
+	switch (*mode) {
+	case DRX_POWER_UP:
+		sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_NONE;
+		break;
+	case DRXK_POWER_DOWN_OFDM:
+		sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_OFDM;
+		break;
+	case DRXK_POWER_DOWN_CORE:
+		sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_CLOCK;
+		break;
+	case DRXK_POWER_DOWN_PLL:
+		sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_PLL;
+		break;
+	case DRX_POWER_DOWN:
+		sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_OSC;
+		break;
+	default:
+		/* Unknow sleep mode */
+		return -1;
+		break;
+	}
+
+	/* If already in requested power mode, do nothing */
+	if (state->m_currentPowerMode == *mode)
+		return 0;
+
+	/* For next steps make sure to start from DRX_POWER_UP mode */
+	if (state->m_currentPowerMode != DRX_POWER_UP)
+	{
+		do {
+			CHK_ERROR(PowerUpDevice(state));
+			CHK_ERROR(DVBTEnableOFDMTokenRing(state, true));
+		} while(0);
+	}
+
+	if (*mode == DRX_POWER_UP) {
+		/* Restore analog & pin configuartion */
+	} else {
+		/* Power down to requested mode */
+		/* Backup some register settings */
+		/* Set pins with possible pull-ups connected
+		   to them in input mode */
+		/* Analog power down */
+		/* ADC power down */
+		/* Power down device */
+		/* stop all comm_exec */
+		/* Stop and power down previous standard */
+		do {
+			switch (state->m_OperationMode)	{
+			case OM_DVBT:
+				CHK_ERROR(MPEGTSStop(state));
+				CHK_ERROR(PowerDownDVBT(state, false));
+				break;
+			case OM_QAM_ITU_A:
+			case OM_QAM_ITU_C:
+				CHK_ERROR(MPEGTSStop(state));
+				CHK_ERROR(PowerDownQAM(state));
+				break;
+			default:
+				break;
+			}
+			CHK_ERROR(DVBTEnableOFDMTokenRing(state, false));
+			CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A,
+					    sioCcPwdMode));
+			CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A,
+					    SIO_CC_UPDATE_KEY));
+
+			if  (*mode != DRXK_POWER_DOWN_OFDM) {
+				state->m_HICfgCtrl |=
+					SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
+				CHK_ERROR(HI_CfgCommand(state));
+			}
+		} while(0);
+	}
+	state->m_currentPowerMode = *mode;
+	return (status);
+}
+
+static int PowerDownDVBT(struct drxk_state *state, bool setPowerMode)
+{
+	DRXPowerMode_t powerMode = DRXK_POWER_DOWN_OFDM;
+	u16 cmdResult = 0;
+	u16 data = 0;
+	int status;
+
+	do {
+		CHK_ERROR(Read16_0(state, SCU_COMM_EXEC__A, &data));
+		if (data == SCU_COMM_EXEC_ACTIVE) {
+			/* Send OFDM stop command */
+			CHK_ERROR(scu_command(state,
+					      SCU_RAM_COMMAND_STANDARD_OFDM |
+					      SCU_RAM_COMMAND_CMD_DEMOD_STOP,
+					      0, NULL, 1, &cmdResult));
+			/* Send OFDM reset command */
+			CHK_ERROR(scu_command(state,
+					      SCU_RAM_COMMAND_STANDARD_OFDM |
+					      SCU_RAM_COMMAND_CMD_DEMOD_RESET,
+					      0, NULL, 1, &cmdResult));
+		}
+
+		/* Reset datapath for OFDM, processors first */
+		CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A,
+				    OFDM_SC_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A,
+				    OFDM_LC_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A,
+				    IQM_COMM_EXEC_B_STOP));
+
+		/* powerdown AFE                   */
+		CHK_ERROR(SetIqmAf(state,false));
+
+		/* powerdown to OFDM mode          */
+		if (setPowerMode) {
+			CHK_ERROR(CtrlPowerMode(state,&powerMode));
+		}
+	} while(0);
+	return status;
+}
+
+static int SetOperationMode(struct drxk_state *state, enum OperationMode oMode)
+{
+	int status = 0;
+
+	/*
+	  Stop and power down previous standard
+	  TODO investigate total power down instead of partial
+	  power down depending on "previous" standard.
+	*/
+	do {
+		/* disable HW lock indicator */
+		CHK_ERROR (Write16_0(state, SCU_RAM_GPIO__A,
+				     SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+
+		if (state->m_OperationMode != oMode) {
+			switch (state->m_OperationMode)	{
+				// OM_NONE was added for start up
+			case OM_NONE:
+				break;
+			case OM_DVBT:
+				CHK_ERROR(MPEGTSStop(state));
+				CHK_ERROR(PowerDownDVBT(state,true));
+				state->m_OperationMode = OM_NONE;
+				break;
+			case OM_QAM_ITU_B:
+				status = -1;
+				break;
+			case OM_QAM_ITU_A: /* fallthrough */
+			case OM_QAM_ITU_C:
+				CHK_ERROR(MPEGTSStop(state));
+				CHK_ERROR(PowerDownQAM(state));
+				state->m_OperationMode = OM_NONE;
+				break;
+			default:
+				status = -1;
+			}
+			CHK_ERROR(status);
+
+			/*
+			  Power up new standard
+			*/
+			switch (oMode)
+			{
+			case OM_DVBT:
+				state->m_OperationMode = oMode;
+				CHK_ERROR(SetDVBTStandard(state, oMode));
+				break;
+			case OM_QAM_ITU_B:
+				status = -1;
+				break;
+			case OM_QAM_ITU_A:        /* fallthrough */
+			case OM_QAM_ITU_C:
+				state->m_OperationMode = oMode;
+				CHK_ERROR(SetQAMStandard(state,oMode));
+				break;
+			default:
+				status = -1;
+			}
+		}
+		CHK_ERROR(status);
+	} while(0);
+	return 0;
+}
+
+static int Start(struct drxk_state *state, s32 offsetFreq,
+		 s32 IntermediateFrequency)
+{
+	int status;
+
+	do {
+		u16 IFreqkHz;
+		s32   OffsetkHz = offsetFreq / 1000;
+
+		if (state->m_DrxkState != DRXK_STOPPED &&
+		    state->m_DrxkState != DRXK_DTV_STARTED) {
+			status = -1;
+			break;
+		}
+		state->m_bMirrorFreqSpect =
+			(state->param.inversion == INVERSION_ON);
+
+		if (IntermediateFrequency < 0) {
+			state->m_bMirrorFreqSpect = !state->m_bMirrorFreqSpect;
+			IntermediateFrequency = -IntermediateFrequency;
+		}
+
+		switch(state->m_OperationMode) {
+		case OM_QAM_ITU_A:
+		case OM_QAM_ITU_C:
+			IFreqkHz = (IntermediateFrequency / 1000);
+			CHK_ERROR(SetQAM(state,IFreqkHz, OffsetkHz));
+			state->m_DrxkState = DRXK_DTV_STARTED;
+			break;
+		case OM_DVBT:
+			IFreqkHz = (IntermediateFrequency / 1000);
+			CHK_ERROR(MPEGTSStop(state));
+			CHK_ERROR(SetDVBT(state,IFreqkHz, OffsetkHz));
+			CHK_ERROR(DVBTStart(state));
+			state->m_DrxkState = DRXK_DTV_STARTED;
+			break;
+		default:
+			break;
+		}
+	} while(0);
+	return status;
+}
+
+static int ShutDown(struct drxk_state *state)
+{
+	MPEGTSStop(state);
+	return 0;
+}
+
+static int GetLockStatus(struct drxk_state *state, u32 *pLockStatus, u32 Time)
+{
+	int status;
+
+	if (pLockStatus == NULL)
+		return -1;
+
+	*pLockStatus = NOT_LOCKED;
+
+	/* define the SCU command code */
+	switch (state->m_OperationMode) {
+	case OM_QAM_ITU_A:
+	case OM_QAM_ITU_B:
+	case OM_QAM_ITU_C:
+		status = GetQAMLockStatus(state, pLockStatus);
+		break;
+	case OM_DVBT:
+		status = GetDVBTLockStatus(state, pLockStatus);
+		break;
+	default:
+		break;
+	}
+	return status;
+}
+
+static int MPEGTSStart(struct drxk_state *state)
+{
+	int status = 0;
+
+	u16 fecOcSncMode = 0;
+
+	do {
+		/* Allow OC to sync again */
+		CHK_ERROR(Read16_0(state, FEC_OC_SNC_MODE__A, &fecOcSncMode));
+		fecOcSncMode &= ~FEC_OC_SNC_MODE_SHUTDOWN__M;
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_MODE__A, fecOcSncMode));
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_UNLOCK__A, 1));
+	} while (0);
+	return status;
+}
+
+static int MPEGTSDtoInit(struct drxk_state *state)
+{
+	int status = -1;
+
+	do {
+		/* Rate integration settings */
+		CHK_ERROR(Write16_0(state, FEC_OC_RCN_CTL_STEP_LO__A,  0x0000));
+		CHK_ERROR(Write16_0(state, FEC_OC_RCN_CTL_STEP_HI__A,  0x000C));
+		CHK_ERROR(Write16_0(state, FEC_OC_RCN_GAIN__A,         0x000A));
+		CHK_ERROR(Write16_0(state, FEC_OC_AVR_PARM_A__A,       0x0008));
+		CHK_ERROR(Write16_0(state, FEC_OC_AVR_PARM_B__A,       0x0006));
+		CHK_ERROR(Write16_0(state, FEC_OC_TMD_HI_MARGIN__A,    0x0680));
+		CHK_ERROR(Write16_0(state, FEC_OC_TMD_LO_MARGIN__A,    0x0080));
+		CHK_ERROR(Write16_0(state, FEC_OC_TMD_COUNT__A,        0x03F4));
+
+		/* Additional configuration */
+		CHK_ERROR(Write16_0(state, FEC_OC_OCR_INVERT__A,        0));
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_LWM__A,           2));
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_HWM__A,          12));
+	} while (0);
+	return status;
+}
+
+static int MPEGTSDtoSetup(struct drxk_state *state, enum OperationMode oMode)
+{
+	int status = -1;
+
+	u16 fecOcRegMode = 0;       /* FEC_OC_MODE       register value */
+	u16 fecOcRegIprMode = 0;    /* FEC_OC_IPR_MODE   register value */
+	u16 fecOcDtoMode = 0;       /* FEC_OC_IPR_INVERT register value */
+	u16 fecOcFctMode = 0;       /* FEC_OC_IPR_INVERT register value */
+	u16 fecOcDtoPeriod = 2;     /* FEC_OC_IPR_INVERT register value */
+	u16 fecOcDtoBurstLen = 188; /* FEC_OC_IPR_INVERT register value */
+	u32 fecOcRcnCtlRate = 0;    /* FEC_OC_IPR_INVERT register value */
+	u16 fecOcTmdMode = 0;
+	u16 fecOcTmdIntUpdRate = 0;
+	u32  maxBitRate = 0;
+	bool staticCLK = false;
+
+	do {
+		/* Check insertion of the Reed-Solomon parity bytes */
+		CHK_ERROR(Read16_0(state, FEC_OC_MODE__A, &fecOcRegMode));
+		CHK_ERROR(Read16_0(state, FEC_OC_IPR_MODE__A,
+				   &fecOcRegIprMode));
+		fecOcRegMode    &= (~FEC_OC_MODE_PARITY__M);
+		fecOcRegIprMode &= (~FEC_OC_IPR_MODE_MVAL_DIS_PAR__M);
+		if (state->m_insertRSByte == true) {
+			/* enable parity symbol forward */
+			fecOcRegMode    |= FEC_OC_MODE_PARITY__M;
+			/* MVAL disable during parity bytes */
+			fecOcRegIprMode |= FEC_OC_IPR_MODE_MVAL_DIS_PAR__M;
+			/* TS burst length to 204 */
+			fecOcDtoBurstLen = 204 ;
+		}
+
+		/* Check serial or parrallel output */
+		fecOcRegIprMode &= (~(FEC_OC_IPR_MODE_SERIAL__M));
+		if (state->m_enableParallel == false) {
+			/* MPEG data output is serial -> set ipr_mode[0] */
+			fecOcRegIprMode |= FEC_OC_IPR_MODE_SERIAL__M;
+		}
+
+		switch (oMode) {
+		case OM_DVBT:
+			maxBitRate = state->m_DVBTBitrate;
+			fecOcTmdMode = 3;
+			fecOcRcnCtlRate = 0xC00000;
+			staticCLK = state->m_DVBTStaticCLK;
+			break;
+		case OM_QAM_ITU_A: /* fallthrough */
+		case OM_QAM_ITU_C:
+			fecOcTmdMode = 0x0004;
+			fecOcRcnCtlRate = 0xD2B4EE; /* good for >63 Mb/s */
+			maxBitRate = state->m_DVBCBitrate;
+			staticCLK = state->m_DVBCStaticCLK;
+			break;
+		default:
+			status = -1;
+		} /* switch (standard) */
+		CHK_ERROR(status);
+
+		/* Configure DTO's */
+		if (staticCLK )	{
+			u32 bitRate = 0;
+
+			/* Rational DTO for MCLK source (static MCLK rate),
+			   Dynamic DTO for optimal grouping
+			   (avoid intra-packet gaps),
+			   DTO offset enable to sync TS burst with MSTRT */
+			fecOcDtoMode = (FEC_OC_DTO_MODE_DYNAMIC__M |
+					FEC_OC_DTO_MODE_OFFSET_ENABLE__M);
+			fecOcFctMode = (FEC_OC_FCT_MODE_RAT_ENA__M |
+					FEC_OC_FCT_MODE_VIRT_ENA__M);
+
+			/* Check user defined bitrate */
+			bitRate = maxBitRate;
+			if (bitRate > 75900000UL)
+			{  /* max is 75.9 Mb/s */
+				bitRate = 75900000UL;
+			}
+			/* Rational DTO period:
+			   dto_period = (Fsys / bitrate) - 2
+
+			   Result should be floored,
+			   to make sure >= requested bitrate
+			*/
+			fecOcDtoPeriod = (u16) (((state->m_sysClockFreq)
+						 * 1000) / bitRate);
+			if (fecOcDtoPeriod <= 2)
+				fecOcDtoPeriod = 0;
+			else
+				fecOcDtoPeriod -= 2;
+			fecOcTmdIntUpdRate = 8;
+		} else {
+			/* (commonAttr->staticCLK == false) => dynamic mode */
+			fecOcDtoMode = FEC_OC_DTO_MODE_DYNAMIC__M;
+			fecOcFctMode = FEC_OC_FCT_MODE__PRE;
+			fecOcTmdIntUpdRate = 5;
+		}
+
+		/* Write appropriate registers with requested configuration */
+		CHK_ERROR(Write16_0(state, FEC_OC_DTO_BURST_LEN__A,
+				    fecOcDtoBurstLen));
+		CHK_ERROR(Write16_0(state, FEC_OC_DTO_PERIOD__A,
+				    fecOcDtoPeriod));
+		CHK_ERROR(Write16_0(state, FEC_OC_DTO_MODE__A,
+				    fecOcDtoMode));
+		CHK_ERROR(Write16_0(state, FEC_OC_FCT_MODE__A,
+				    fecOcFctMode));
+		CHK_ERROR(Write16_0(state, FEC_OC_MODE__A,
+				    fecOcRegMode));
+		CHK_ERROR(Write16_0(state, FEC_OC_IPR_MODE__A,
+				    fecOcRegIprMode));
+
+		/* Rate integration settings */
+		CHK_ERROR(Write32(state, FEC_OC_RCN_CTL_RATE_LO__A,
+				  fecOcRcnCtlRate ,0));
+		CHK_ERROR(Write16_0(state, FEC_OC_TMD_INT_UPD_RATE__A,
+				    fecOcTmdIntUpdRate));
+		CHK_ERROR(Write16_0(state, FEC_OC_TMD_MODE__A,
+				    fecOcTmdMode));
+	} while (0);
+	return status;
+}
+
+static int MPEGTSConfigurePolarity(struct drxk_state *state)
+{
+	int status;
+	u16 fecOcRegIprInvert  = 0;
+
+	/* Data mask for the output data byte */
+	u16 InvertDataMask =
+		FEC_OC_IPR_INVERT_MD7__M | FEC_OC_IPR_INVERT_MD6__M |
+		FEC_OC_IPR_INVERT_MD5__M | FEC_OC_IPR_INVERT_MD4__M |
+		FEC_OC_IPR_INVERT_MD3__M | FEC_OC_IPR_INVERT_MD2__M |
+		FEC_OC_IPR_INVERT_MD1__M | FEC_OC_IPR_INVERT_MD0__M;
+
+	/* Control selective inversion of output bits */
+	fecOcRegIprInvert &= (~(InvertDataMask));
+	if (state->m_invertDATA == true)
+		fecOcRegIprInvert |= InvertDataMask;
+	fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MERR__M));
+	if (state->m_invertERR == true)
+		fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MERR__M;
+	fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MSTRT__M));
+	if (state->m_invertSTR == true)
+		fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MSTRT__M;
+	fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MVAL__M));
+	if (state->m_invertVAL == true)
+		fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MVAL__M;
+	fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MCLK__M));
+	if (state->m_invertCLK == true)
+		fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MCLK__M;
+	status = Write16_0(state,FEC_OC_IPR_INVERT__A, fecOcRegIprInvert);
+	return status;
+}
+
+#define   SCU_RAM_AGC_KI_INV_RF_POL__M 0x4000
+
+static int SetAgcRf(struct drxk_state *state,
+		    struct SCfgAgc *pAgcCfg, bool isDTV)
+{
+	int status = 0;
+	struct SCfgAgc *pIfAgcSettings;
+
+	if (pAgcCfg == NULL)
+		return -1;
+
+	do {
+		u16 data = 0;
+
+		switch (pAgcCfg->ctrlMode) {
+		case  DRXK_AGC_CTRL_AUTO:
+
+			/* Enable RF AGC DAC */
+			CHK_ERROR(Read16_0(state,  IQM_AF_STDBY__A , &data));
+			data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
+			CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A, data));
+
+			CHK_ERROR(Read16(state, SCU_RAM_AGC_CONFIG__A,
+					 &data, 0));
+
+			/* Enable SCU RF AGC loop */
+			data &= ~SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
+
+			/* Polarity */
+			if (state->m_RfAgcPol)
+				data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
+			else
+				data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_CONFIG__A, data));
+
+			/* Set speed (using complementary reduction value) */
+			CHK_ERROR(Read16(state, SCU_RAM_AGC_KI_RED__A,
+					 &data, 0));
+
+			data &= ~SCU_RAM_AGC_KI_RED_RAGC_RED__M;
+			data |= (~(pAgcCfg->speed <<
+				   SCU_RAM_AGC_KI_RED_RAGC_RED__B)
+				 & SCU_RAM_AGC_KI_RED_RAGC_RED__M);
+
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_KI_RED__A, data));
+
+			if (IsDVBT(state))
+				pIfAgcSettings = &state->m_dvbtIfAgcCfg;
+			else if (IsQAM(state))
+				pIfAgcSettings = &state->m_qamIfAgcCfg;
+			else
+				pIfAgcSettings = &state->m_atvIfAgcCfg;
+			if (pIfAgcSettings == NULL)
+				return -1;
+
+			/* Set TOP, only if IF-AGC is in AUTO mode */
+			if (pIfAgcSettings->ctrlMode == DRXK_AGC_CTRL_AUTO)
+				CHK_ERROR(Write16_0(state,
+						    SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
+						    pAgcCfg->top));
+
+			/* Cut-Off current */
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_RF_IACCU_HI_CO__A,
+					    pAgcCfg->cutOffCurrent));
+
+			/* Max. output level */
+			CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_MAX__A,
+					    pAgcCfg->maxOutputLevel));
+
+			break;
+
+		case DRXK_AGC_CTRL_USER:
+			/* Enable RF AGC DAC */
+			CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A, &data));
+			data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
+			CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A, data));
+
+			/* Disable SCU RF AGC loop */
+			CHK_ERROR(Read16_0(state,
+					   SCU_RAM_AGC_CONFIG__A, &data));
+			data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
+			if (state->m_RfAgcPol)
+				data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
+			else
+				data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
+			CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CONFIG__A,
+					    data));
+
+			/* SCU c.o.c. to 0, enabling full control range */
+			CHK_ERROR(Write16_0(state,  SCU_RAM_AGC_RF_IACCU_HI_CO__A,
+					    0));
+
+			/* Write value to output pin */
+			CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_HI__A,
+					    pAgcCfg->outputLevel));
+			break;
+
+		case  DRXK_AGC_CTRL_OFF:
+			/* Disable RF AGC DAC */
+			CHK_ERROR(Read16_0(state,  IQM_AF_STDBY__A , &data));
+			data |= IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
+			CHK_ERROR(Write16_0(state,  IQM_AF_STDBY__A , data));
+
+			/* Disable SCU RF AGC loop */
+			CHK_ERROR(Read16_0(state,
+					   SCU_RAM_AGC_CONFIG__A, &data));
+			data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_CONFIG__A, data));
+			break;
+
+		default:
+			return -1;
+
+		} /* switch (agcsettings->ctrlMode) */
+	} while(0);
+	return status;
+}
+
+#define SCU_RAM_AGC_KI_INV_IF_POL__M 0x2000
+
+static int SetAgcIf (struct drxk_state *state,
+		     struct SCfgAgc *pAgcCfg, bool isDTV)
+{
+	u16 data = 0;
+	int status = 0;
+	struct SCfgAgc *pRfAgcSettings;
+
+	do {
+		switch (pAgcCfg->ctrlMode) {
+		case  DRXK_AGC_CTRL_AUTO:
+
+			/* Enable IF AGC DAC */
+			CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
+			data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
+			CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
+
+			CHK_ERROR(Read16_0(state,  SCU_RAM_AGC_CONFIG__A,
+					   &data));
+
+			/* Enable SCU IF AGC loop */
+			data &= ~SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
+
+			/* Polarity */
+			if (state->m_IfAgcPol)
+				data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
+			else
+				data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_CONFIG__A, data));
+
+			/* Set speed (using complementary reduction value) */
+			CHK_ERROR(Read16_0(state, SCU_RAM_AGC_KI_RED__A,
+					   &data));
+			data &= ~SCU_RAM_AGC_KI_RED_IAGC_RED__M;
+			data |= (~(pAgcCfg->speed <<
+				   SCU_RAM_AGC_KI_RED_IAGC_RED__B)
+				 & SCU_RAM_AGC_KI_RED_IAGC_RED__M);
+
+			CHK_ERROR(Write16_0(state,  SCU_RAM_AGC_KI_RED__A ,
+					    data));
+
+			if (IsQAM(state))
+				pRfAgcSettings = &state->m_qamRfAgcCfg;
+			else
+				pRfAgcSettings = &state->m_atvRfAgcCfg;
+			if (pRfAgcSettings == NULL)
+				return -1;
+			/* Restore TOP */
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
+					    pRfAgcSettings->top));
+			break;
+
+		case  DRXK_AGC_CTRL_USER:
+
+			/* Enable IF AGC DAC */
+			CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
+			data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
+			CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
+
+			CHK_ERROR(Read16_0(state,
+					   SCU_RAM_AGC_CONFIG__A, &data));
+
+			/* Disable SCU IF AGC loop */
+			data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
+
+			/* Polarity */
+			if (state->m_IfAgcPol)
+				data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
+			else
+				data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_CONFIG__A, data));
+
+			/* Write value to output pin */
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
+					    pAgcCfg->outputLevel));
+			break;
+
+		case  DRXK_AGC_CTRL_OFF:
+
+			/* Disable If AGC DAC */
+			CHK_ERROR(Read16_0(state,  IQM_AF_STDBY__A , &data));
+			data |= IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
+			CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
+
+			/* Disable SCU IF AGC loop */
+			CHK_ERROR(Read16_0(state,
+					   SCU_RAM_AGC_CONFIG__A, &data));
+			data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_AGC_CONFIG__A, data));
+			break;
+		} /* switch (agcSettingsIf->ctrlMode) */
+
+		/* always set the top to support
+		   configurations without if-loop */
+		CHK_ERROR(Write16_0(state,  SCU_RAM_AGC_INGAIN_TGT_MIN__A,
+				    pAgcCfg->top));
+
+
+	} while(0);
+	return status;
+}
+
+static int ReadIFAgc(struct drxk_state *state, u32 *pValue)
+{
+	u16 agcDacLvl;
+	int status = Read16_0(state, IQM_AF_AGC_IF__A, &agcDacLvl);
+
+	*pValue = 0;
+
+	if (status==0) {
+		u16 Level = 0;
+		if (agcDacLvl > DRXK_AGC_DAC_OFFSET)
+			Level = agcDacLvl - DRXK_AGC_DAC_OFFSET;
+		if (Level < 14000)
+			*pValue = (14000 - Level) / 4 ;
+		else
+			*pValue = 0;
+	}
+	return status;
+}
+
+static int GetQAMSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
+{
+	int status = 0;
+
+	do {
+		/* MER calculation */
+		u16 qamSlErrPower = 0;  /* accum. error between
+					   raw and sliced symbols */
+		u32  qamSlSigPower = 0; /* used for MER, depends of
+					   QAM constellation */
+		u32  qamSlMer      = 0; /* QAM MER */
+
+		/* get the register value needed for MER */
+		CHK_ERROR(Read16_0(state,QAM_SL_ERR_POWER__A, &qamSlErrPower));
+
+		switch(state->param.u.qam.modulation) {
+		case QAM_16:
+			qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM16 << 2;
+			break;
+		case QAM_32:
+			qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM32 << 2;
+			break;
+		case QAM_64:
+			qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM64 << 2;
+			break;
+		case QAM_128:
+			qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM128 << 2;
+			break;
+		default:
+		case QAM_256:
+			qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM256 << 2;
+			break;
+		}
+
+		if (qamSlErrPower > 0) {
+			qamSlMer =  Log10Times100(qamSlSigPower) -
+				Log10Times100((u32) qamSlErrPower);
+		}
+		*pSignalToNoise = qamSlMer;
+	} while(0);
+	return status;
+}
+
+static int GetDVBTSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
+{
+	int status = 0;
+
+	u16 regData            = 0;
+	u32  EqRegTdSqrErrI     = 0;
+	u32  EqRegTdSqrErrQ     = 0;
+	u16 EqRegTdSqrErrExp   = 0;
+	u16 EqRegTdTpsPwrOfs   = 0;
+	u16 EqRegTdReqSmbCnt   = 0;
+	u32  tpsCnt             = 0;
+	u32  SqrErrIQ           = 0;
+	u32  a                  = 0;
+	u32  b                  = 0;
+	u32  c                  = 0;
+	u32  iMER               = 0;
+	u16 transmissionParams = 0;
+
+	do {
+		CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_TPS_PWR_OFS__A,
+				   &EqRegTdTpsPwrOfs));
+		CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_REQ_SMB_CNT__A,
+				   &EqRegTdReqSmbCnt));
+		CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_SQR_ERR_EXP__A,
+				   &EqRegTdSqrErrExp));
+		CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_SQR_ERR_I__A,
+				   &regData));
+		/* Extend SQR_ERR_I operational range */
+		EqRegTdSqrErrI  = (u32) regData;
+		if ((EqRegTdSqrErrExp > 11) &&
+		    (EqRegTdSqrErrI < 0x00000FFFUL)) {
+			EqRegTdSqrErrI += 0x00010000UL;
+		}
+		CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_SQR_ERR_Q__A,
+				   &regData));
+		/* Extend SQR_ERR_Q operational range */
+		EqRegTdSqrErrQ  = (u32)regData;
+		if ((EqRegTdSqrErrExp > 11) &&
+		    (EqRegTdSqrErrQ < 0x00000FFFUL))
+			EqRegTdSqrErrQ += 0x00010000UL;
+
+		CHK_ERROR(Read16_0(state,OFDM_SC_RA_RAM_OP_PARAM__A,
+				   &transmissionParams));
+
+		/* Check input data for MER */
+
+		/* MER calculation (in 0.1 dB) without math.h */
+		if ((EqRegTdTpsPwrOfs == 0) || (EqRegTdReqSmbCnt == 0))
+			iMER = 0;
+		else if ((EqRegTdSqrErrI + EqRegTdSqrErrQ) == 0) {
+			/* No error at all, this must be the HW reset value
+			 * Apparently no first measurement yet
+			 * Set MER to 0.0 */
+			iMER = 0;
+		} else {
+			SqrErrIQ = (EqRegTdSqrErrI + EqRegTdSqrErrQ) <<
+				EqRegTdSqrErrExp;
+			if ((transmissionParams &
+			     OFDM_SC_RA_RAM_OP_PARAM_MODE__M)
+			    == OFDM_SC_RA_RAM_OP_PARAM_MODE_2K)
+				tpsCnt = 17;
+			else
+				tpsCnt = 68;
+
+			/* IMER = 100 * log10 (x)
+			   where x = (EqRegTdTpsPwrOfs^2 *
+			   EqRegTdReqSmbCnt * tpsCnt)/SqrErrIQ
+
+			   => IMER = a + b -c
+			   where a = 100 * log10 (EqRegTdTpsPwrOfs^2)
+			   b = 100 * log10 (EqRegTdReqSmbCnt * tpsCnt)
+			   c = 100 * log10 (SqrErrIQ)
+			*/
+
+			/* log(x) x = 9bits * 9bits->18 bits  */
+			a = Log10Times100(EqRegTdTpsPwrOfs*EqRegTdTpsPwrOfs);
+			/* log(x) x = 16bits * 7bits->23 bits  */
+			b = Log10Times100(EqRegTdReqSmbCnt*tpsCnt);
+			/* log(x) x = (16bits + 16bits) << 15 ->32 bits  */
+			c = Log10Times100(SqrErrIQ);
+
+			iMER = a + b;
+			/* No negative MER, clip to zero */
+			if (iMER > c)
+				iMER -= c;
+			else
+				iMER = 0;
+		}
+		*pSignalToNoise = iMER;
+	} while(0);
+
+	return status;
+}
+
+static int GetSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
+{
+	*pSignalToNoise = 0;
+	switch(state->m_OperationMode) {
+	case OM_DVBT:
+		return GetDVBTSignalToNoise(state, pSignalToNoise);
+	case OM_QAM_ITU_A:
+	case OM_QAM_ITU_C:
+		return GetQAMSignalToNoise(state, pSignalToNoise);
+	default:
+		break;
+	}
+	return 0;
+}
+
+#if 0
+static int GetDVBTQuality(struct drxk_state *state, s32 *pQuality)
+{
+	/* SNR Values for quasi errorfree reception rom Nordig 2.2 */
+	int status = 0;
+
+	static s32 QE_SN[] =
+		{
+			51, // QPSK 1/2
+			69, // QPSK 2/3
+			79, // QPSK 3/4
+			89, // QPSK 5/6
+			97, // QPSK 7/8
+			108, // 16-QAM 1/2
+			131, // 16-QAM 2/3
+			146, // 16-QAM 3/4
+			156, // 16-QAM 5/6
+			160, // 16-QAM 7/8
+			165, // 64-QAM 1/2
+			187, // 64-QAM 2/3
+			202, // 64-QAM 3/4
+			216, // 64-QAM 5/6
+			225, // 64-QAM 7/8
+		};
+
+	*pQuality = 0;
+
+	do {
+		s32 SignalToNoise = 0;
+		u16 Constellation = 0;
+		u16 CodeRate = 0;
+		u32 SignalToNoiseRel;
+		u32 BERQuality;
+
+		CHK_ERROR(GetDVBTSignalToNoise(state,&SignalToNoise));
+		CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_TPS_CONST__A,
+				   &Constellation));
+		Constellation &= OFDM_EQ_TOP_TD_TPS_CONST__M;
+
+		CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_TPS_CODE_HP__A,
+				   &CodeRate));
+		CodeRate &= OFDM_EQ_TOP_TD_TPS_CODE_HP__M;
+
+		if (Constellation > OFDM_EQ_TOP_TD_TPS_CONST_64QAM ||
+		    CodeRate > OFDM_EQ_TOP_TD_TPS_CODE_LP_7_8)
+			break;
+		SignalToNoiseRel = SignalToNoise -
+			QE_SN[Constellation * 5 + CodeRate];
+		BERQuality = 100;
+
+		if (SignalToNoiseRel < -70) *pQuality = 0;
+		else if (SignalToNoiseRel < 30)
+			*pQuality = ((SignalToNoiseRel + 70) *
+				     BERQuality) / 100;
+		else
+			*pQuality = BERQuality;
+	} while(0);
+	return 0;
+};
+
+static int GetDVBCQuality(struct drxk_state *state,  s32 *pQuality)
+{
+	int status = 0;
+	*pQuality = 0;
+
+	do {
+		u32 SignalToNoise = 0;
+		u32 BERQuality = 100;
+		u32 SignalToNoiseRel = 0;
+
+		CHK_ERROR(GetQAMSignalToNoise(state, &SignalToNoise));
+
+		switch(state->param.u.qam.modulation) {
+		case QAM_16:
+			SignalToNoiseRel = SignalToNoise - 200;
+			break;
+		case QAM_32:
+			SignalToNoiseRel = SignalToNoise - 230;
+			break; /* Not in NorDig */
+		case QAM_64:
+			SignalToNoiseRel = SignalToNoise - 260;
+			break;
+		case QAM_128:
+			SignalToNoiseRel = SignalToNoise - 290;
+			break;
+		default:
+		case QAM_256:
+			SignalToNoiseRel = SignalToNoise - 320;
+			break;
+		}
+
+		if (SignalToNoiseRel < -70)
+			*pQuality = 0;
+		else if (SignalToNoiseRel < 30)
+			*pQuality = ((SignalToNoiseRel + 70) *
+				     BERQuality) / 100;
+		else
+			*pQuality = BERQuality;
+	} while(0);
+
+	return status;
+}
+
+static int GetQuality(struct drxk_state *state, s32 *pQuality)
+{
+	switch(state->m_OperationMode) {
+	case  OM_DVBT:
+		return GetDVBTQuality(state, pQuality);
+	case  OM_QAM_ITU_A:
+		return GetDVBCQuality(state, pQuality);
+	default:
+		break;
+	}
+
+	return 0;
+}
+#endif
+
+/* Free data ram in SIO HI */
+#define SIO_HI_RA_RAM_USR_BEGIN__A 0x420040
+#define SIO_HI_RA_RAM_USR_END__A   0x420060
+
+#define DRXK_HI_ATOMIC_BUF_START (SIO_HI_RA_RAM_USR_BEGIN__A)
+#define DRXK_HI_ATOMIC_BUF_END   (SIO_HI_RA_RAM_USR_BEGIN__A + 7)
+#define DRXK_HI_ATOMIC_READ      SIO_HI_RA_RAM_PAR_3_ACP_RW_READ
+#define DRXK_HI_ATOMIC_WRITE     SIO_HI_RA_RAM_PAR_3_ACP_RW_WRITE
+
+#define DRXDAP_FASI_ADDR2BLOCK(addr)  (((addr) >> 22) & 0x3F)
+#define DRXDAP_FASI_ADDR2BANK(addr)   (((addr) >> 16) & 0x3F)
+#define DRXDAP_FASI_ADDR2OFFSET(addr) ((addr) & 0x7FFF)
+
+static int ConfigureI2CBridge(struct drxk_state *state, bool bEnableBridge)
+{
+	int status;
+
+	if (state->m_DrxkState == DRXK_UNINITIALIZED)
+		return -1;
+	if (state->m_DrxkState == DRXK_POWERED_DOWN)
+		return -1;
+
+	do {
+		CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_1__A,
+				    SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY));
+		if (bEnableBridge) {
+			CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_2__A,
+					    SIO_HI_RA_RAM_PAR_2_BRD_CFG_CLOSED));
+		} else {
+			CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_2__A,
+					    SIO_HI_RA_RAM_PAR_2_BRD_CFG_OPEN));
+		}
+
+		CHK_ERROR(HI_Command(state, SIO_HI_RA_RAM_CMD_BRDCTRL,0));
+	} while(0);
+	return status;
+}
+
+static int SetPreSaw(struct drxk_state *state, struct SCfgPreSaw *pPreSawCfg)
+{
+	int status;
+
+	if ((pPreSawCfg == NULL) || (pPreSawCfg->reference>IQM_AF_PDREF__M))
+		return -1;
+
+	status = Write16_0(state, IQM_AF_PDREF__A, pPreSawCfg->reference);
+	return status;
+}
+
+static int BLDirectCmd(struct drxk_state *state, u32 targetAddr,
+		       u16 romOffset, u16 nrOfElements,	u32 timeOut)
+{
+	u16 blStatus   = 0;
+	u16 offset     = (u16)((targetAddr >> 0) & 0x00FFFF);
+	u16 blockbank  = (u16)((targetAddr >> 16) & 0x000FFF);
+	int status ;
+	unsigned long end;
+
+	mutex_lock(&state->mutex);
+	do {
+		CHK_ERROR(Write16_0(state, SIO_BL_MODE__A, SIO_BL_MODE_DIRECT));
+		CHK_ERROR(Write16_0(state, SIO_BL_TGT_HDR__A, blockbank));
+		CHK_ERROR(Write16_0(state, SIO_BL_TGT_ADDR__A, offset));
+		CHK_ERROR(Write16_0(state, SIO_BL_SRC_ADDR__A, romOffset));
+		CHK_ERROR(Write16_0(state, SIO_BL_SRC_LEN__A, nrOfElements));
+		CHK_ERROR(Write16_0(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON));
+
+		end=jiffies+msecs_to_jiffies(timeOut);
+		do {
+			CHK_ERROR(Read16_0(state, SIO_BL_STATUS__A, &blStatus));
+		} while ((blStatus == 0x1) &&
+			 time_is_after_jiffies(end));
+		if (blStatus == 0x1) {
+			printk("SIO not ready\n");
+			mutex_unlock(&state->mutex);
+			return -1;
+		}
+	} while(0);
+	mutex_unlock(&state->mutex);
+	return status;
+
+}
+
+static int ADCSyncMeasurement(struct drxk_state *state,  u16 *count)
+{
+	u16 data = 0;
+	int status;
+
+	do {
+		/* Start measurement */
+		CHK_ERROR(Write16_0(state, IQM_AF_COMM_EXEC__A,
+				    IQM_AF_COMM_EXEC_ACTIVE));
+		CHK_ERROR(Write16_0(state,IQM_AF_START_LOCK__A, 1));
+
+		*count = 0;
+		CHK_ERROR(Read16_0(state,IQM_AF_PHASE0__A, &data));
+		if (data == 127)
+			*count = *count+1;
+		CHK_ERROR(Read16_0(state,IQM_AF_PHASE1__A, &data));
+		if (data == 127)
+			*count = *count+1;
+		CHK_ERROR(Read16_0(state,IQM_AF_PHASE2__A, &data));
+		if (data == 127)
+			*count = *count+1;
+	} while(0);
+	return status;
+}
+
+static int ADCSynchronization(struct drxk_state *state)
+{
+	u16 count = 0;
+	int status;
+
+	do {
+		CHK_ERROR(ADCSyncMeasurement(state, &count));
+
+		if (count==1) {
+			/* Try sampling on a diffrent edge */
+			u16 clkNeg = 0;
+
+			CHK_ERROR(Read16_0(state, IQM_AF_CLKNEG__A, &clkNeg));
+			if ((clkNeg |  IQM_AF_CLKNEG_CLKNEGDATA__M) ==
+			    IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS) {
+				clkNeg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
+				clkNeg |=
+					IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_NEG;
+			} else {
+				clkNeg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
+				clkNeg |=
+					IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS;
+			}
+			CHK_ERROR(Write16_0(state, IQM_AF_CLKNEG__A, clkNeg));
+			CHK_ERROR(ADCSyncMeasurement(state, &count));
+		}
+
+		if (count < 2)
+			status = -1;
+	} while (0);
+	return status;
+}
+
+static int SetFrequencyShifter(struct drxk_state *state,
+			       u16 intermediateFreqkHz,
+			       s32 tunerFreqOffset,
+			       bool isDTV)
+{
+	bool selectPosImage = false;
+	u32 rfFreqResidual  = tunerFreqOffset;
+	u32 fmFrequencyShift = 0;
+	bool tunerMirror = !state->m_bMirrorFreqSpect;
+	u32 adcFreq;
+	bool adcFlip;
+	int status;
+	u32 ifFreqActual;
+	u32 samplingFrequency = (u32)(state->m_sysClockFreq / 3);
+	u32 frequencyShift;
+	bool imageToSelect;
+
+	/*
+	  Program frequency shifter
+	  No need to account for mirroring on RF
+	*/
+	if (isDTV) {
+		if ((state->m_OperationMode == OM_QAM_ITU_A) ||
+		    (state->m_OperationMode == OM_QAM_ITU_C) ||
+		    (state->m_OperationMode == OM_DVBT))
+				selectPosImage = true;
+			else
+				selectPosImage = false;
+	}
+	if (tunerMirror)
+		/* tuner doesn't mirror */
+		ifFreqActual = intermediateFreqkHz +
+			rfFreqResidual + fmFrequencyShift;
+	else
+		/* tuner mirrors */
+		ifFreqActual = intermediateFreqkHz -
+			rfFreqResidual - fmFrequencyShift;
+	if (ifFreqActual > samplingFrequency / 2) {
+		/* adc mirrors */
+		adcFreq = samplingFrequency - ifFreqActual;
+		adcFlip = true;
+	} else {
+		/* adc doesn't mirror */
+		adcFreq = ifFreqActual;
+		adcFlip = false;
+	}
+
+	frequencyShift = adcFreq;
+	imageToSelect = state->m_rfmirror ^ tunerMirror ^
+		adcFlip ^ selectPosImage;
+	state->m_IqmFsRateOfs = Frac28a((frequencyShift), samplingFrequency);
+
+	if (imageToSelect)
+		state->m_IqmFsRateOfs = ~state->m_IqmFsRateOfs + 1;
+
+	/* Program frequency shifter with tuner offset compensation */
+	/* frequencyShift += tunerFreqOffset; TODO */
+	status = Write32(state, IQM_FS_RATE_OFS_LO__A ,
+			 state->m_IqmFsRateOfs, 0);
+	return status;
+}
+
+static int InitAGC(struct drxk_state *state, bool isDTV)
+{
+	u16 ingainTgt       = 0;
+	u16 ingainTgtMin    = 0;
+	u16 ingainTgtMax    = 0;
+	u16 clpCyclen       = 0;
+	u16 clpSumMin       = 0;
+	u16 clpDirTo        = 0;
+	u16 snsSumMin       = 0;
+	u16 snsSumMax       = 0;
+	u16 clpSumMax       = 0;
+	u16 snsDirTo        = 0;
+	u16 kiInnergainMin  = 0;
+	u16 ifIaccuHiTgt    = 0;
+	u16 ifIaccuHiTgtMin = 0;
+	u16 ifIaccuHiTgtMax = 0;
+	u16 data            = 0;
+	u16 fastClpCtrlDelay   = 0;
+	u16 clpCtrlMode        = 0;
+	int status = 0;
+
+	do {
+		/* Common settings */
+		snsSumMax       = 1023;
+		ifIaccuHiTgtMin = 2047;
+		clpCyclen       = 500;
+		clpSumMax       = 1023;
+
+		if (IsQAM(state)) {
+			/* Standard specific settings */
+			clpSumMin      = 8;
+			clpDirTo       = (u16) - 9;
+			clpCtrlMode    = 0;
+			snsSumMin      = 8;
+			snsDirTo       = (u16) - 9;
+			kiInnergainMin = (u16) - 1030;
+		} else
+			status = -1;
+		CHK_ERROR((status));
+		if (IsQAM(state)) {
+			ifIaccuHiTgtMax  = 0x2380;
+			ifIaccuHiTgt     = 0x2380;
+			ingainTgtMin     = 0x0511;
+			ingainTgt        = 0x0511;
+			ingainTgtMax     = 5119;
+			fastClpCtrlDelay =
+				state->m_qamIfAgcCfg.FastClipCtrlDelay;
+		} else {
+			ifIaccuHiTgtMax  = 0x1200;
+			ifIaccuHiTgt     = 0x1200;
+			ingainTgtMin     = 13424;
+			ingainTgt        = 13424;
+			ingainTgtMax     = 30000;
+			fastClpCtrlDelay =
+				state->m_dvbtIfAgcCfg.FastClipCtrlDelay;
+		}
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
+				    fastClpCtrlDelay));
+
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CTRL_MODE__A,
+				    clpCtrlMode));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT__A,
+				    ingainTgt));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A,
+				    ingainTgtMin));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A,
+				    ingainTgtMax));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MIN__A,
+				    ifIaccuHiTgtMin));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
+				    ifIaccuHiTgtMax));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_LO__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_HI__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_LO__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM_MAX__A,
+				    clpSumMax));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM_MAX__A,
+				    snsSumMax));
+
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_INNERGAIN_MIN__A,
+				    kiInnergainMin));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT__A,
+				    ifIaccuHiTgt));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CYCLEN__A,
+				    clpCyclen));
+
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_SNS_DEV_MAX__A,
+				    1023));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_SNS_DEV_MIN__A,
+				    (u16) -1023));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_SNS_CTRL_DELAY__A,
+				    50));
+
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAXMINGAIN_TH__A,
+				    20));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM_MIN__A,
+				    clpSumMin));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM_MIN__A,
+				    snsSumMin));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_TO__A,
+				    clpDirTo));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_TO__A,
+				    snsDirTo));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MINGAIN__A, 0x7fff));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAXGAIN__A, 0x0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MIN__A, 0x0117));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAX__A, 0x0657));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CYCCNT__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_WD__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_STP__A, 1));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_CYCCNT__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_WD__A, 0));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_STP__A, 1));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_CYCLEN__A, 500));
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_CYCLEN__A, 500));
+
+		/* Initialize inner-loop KI gain factors */
+		CHK_ERROR(Read16_0(state, SCU_RAM_AGC_KI__A, &data));
+		if (IsQAM(state)) {
+			data = 0x0657;
+			data &= ~SCU_RAM_AGC_KI_RF__M;
+			data |= (DRXK_KI_RAGC_QAM << SCU_RAM_AGC_KI_RF__B);
+			data &= ~SCU_RAM_AGC_KI_IF__M;
+			data |= (DRXK_KI_IAGC_QAM << SCU_RAM_AGC_KI_IF__B);
+		}
+		CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI__A, data));
+	} while(0);
+	return status;
+}
+
+static int DVBTQAMGetAccPktErr(struct drxk_state *state, u16 * packetErr)
+{
+	int status;
+
+	do {
+		if (packetErr == NULL) {
+			CHK_ERROR(Write16_0(state,
+					    SCU_RAM_FEC_ACCUM_PKT_FAILURES__A,
+					    0));
+		} else {
+			CHK_ERROR(Read16_0(state,
+					   SCU_RAM_FEC_ACCUM_PKT_FAILURES__A,
+					   packetErr));
+		}
+	} while (0);
+	return status;
+}
+
+static int DVBTScCommand(struct drxk_state *state,
+			 u16 cmd, u16 subcmd,
+			 u16 param0, u16 param1, u16 param2,
+			 u16 param3, u16 param4)
+{
+	u16 curCmd   = 0;
+	u16 errCode  = 0;
+	u16 retryCnt = 0;
+	u16 scExec   = 0;
+	int    status;
+
+	status = Read16_0(state, OFDM_SC_COMM_EXEC__A, &scExec);
+	if (scExec != 1) {
+		/* SC is not running */
+		return -1;
+	}
+
+	/* Wait until sc is ready to receive command */
+	retryCnt =0;
+	do {
+		msleep(1);
+		status = Read16_0(state, OFDM_SC_RA_RAM_CMD__A, &curCmd);
+		retryCnt++;
+	} while ((curCmd != 0) && (retryCnt < DRXK_MAX_RETRIES));
+	if (retryCnt >= DRXK_MAX_RETRIES)
+		return -1;
+	/* Write sub-command */
+	switch (cmd) {
+		/* All commands using sub-cmd */
+	case OFDM_SC_RA_RAM_CMD_PROC_START:
+	case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
+	case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
+		status = Write16_0(state, OFDM_SC_RA_RAM_CMD_ADDR__A, subcmd);
+		break;
+	default:
+		/* Do nothing */
+		break;
+	} /* switch (cmd->cmd) */
+
+	/* Write needed parameters and the command */
+	switch (cmd) {
+		/* All commands using 5 parameters */
+		/* All commands using 4 parameters */
+		/* All commands using 3 parameters */
+		/* All commands using 2 parameters */
+	case OFDM_SC_RA_RAM_CMD_PROC_START:
+	case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
+	case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
+		status = Write16_0(state, OFDM_SC_RA_RAM_PARAM1__A, param1);
+		/* All commands using 1 parameters */
+	case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
+	case OFDM_SC_RA_RAM_CMD_USER_IO:
+		status = Write16_0(state, OFDM_SC_RA_RAM_PARAM0__A, param0);
+		/* All commands using 0 parameters */
+	case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
+	case OFDM_SC_RA_RAM_CMD_NULL:
+		/* Write command */
+		status = Write16_0(state, OFDM_SC_RA_RAM_CMD__A, cmd);
+		break;
+	default:
+		/* Unknown command */
+		return -EINVAL;
+	} /* switch (cmd->cmd) */
+
+	/* Wait until sc is ready processing command */
+	retryCnt = 0;
+	do{
+		msleep(1);
+		status = Read16_0(state, OFDM_SC_RA_RAM_CMD__A, &curCmd);
+		retryCnt++;
+	} while ((curCmd != 0)  && (retryCnt < DRXK_MAX_RETRIES));
+	if (retryCnt >= DRXK_MAX_RETRIES)
+		return -1;
+
+	/* Check for illegal cmd */
+	status = Read16_0(state, OFDM_SC_RA_RAM_CMD_ADDR__A, &errCode);
+	if (errCode == 0xFFFF)
+	{
+		/* illegal command */
+		return -EINVAL;
+	}
+
+	/* Retreive results parameters from SC */
+	switch (cmd) {
+		/* All commands yielding 5 results */
+		/* All commands yielding 4 results */
+		/* All commands yielding 3 results */
+		/* All commands yielding 2 results */
+		/* All commands yielding 1 result */
+	case OFDM_SC_RA_RAM_CMD_USER_IO:
+	case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
+		status = Read16_0(state, OFDM_SC_RA_RAM_PARAM0__A, &(param0));
+		/* All commands yielding 0 results */
+	case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
+	case OFDM_SC_RA_RAM_CMD_SET_TIMER:
+	case OFDM_SC_RA_RAM_CMD_PROC_START:
+	case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
+	case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
+	case OFDM_SC_RA_RAM_CMD_NULL:
+		break;
+	default:
+		/* Unknown command */
+		return -EINVAL;
+		break;
+	} /* switch (cmd->cmd) */
+	return status;
+}
+
+static int PowerUpDVBT (struct drxk_state *state)
+{
+	DRXPowerMode_t powerMode = DRX_POWER_UP;
+	int status;
+
+	do {
+		CHK_ERROR(CtrlPowerMode(state, &powerMode));
+	} while (0);
+	return status;
+}
+
+static int DVBTCtrlSetIncEnable (struct drxk_state *state, bool* enabled)
+{
+    int status;
+   //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    if (*enabled == true)
+   {
+      status = Write16_0(state, IQM_CF_BYPASSDET__A,  0);
+   }
+   else
+   {
+      status = Write16_0(state, IQM_CF_BYPASSDET__A,   1);
+   }
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+
+   return status;
+}
+    #define DEFAULT_FR_THRES_8K     4000
+static int DVBTCtrlSetFrEnable (struct drxk_state *state, bool* enabled)
+{
+
+    int status;
+   //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+
+   if (*enabled == true)
+   {
+      /* write mask to 1 */
+      status = Write16_0(state, OFDM_SC_RA_RAM_FR_THRES_8K__A,
+	    DEFAULT_FR_THRES_8K);
+   }
+   else
+   {
+      /* write mask to 0 */
+      status = Write16_0(state, OFDM_SC_RA_RAM_FR_THRES_8K__A, 0);
+   }
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+
+   return status;
+}
+
+static int DVBTCtrlSetEchoThreshold (struct drxk_state *state,
+				     struct DRXKCfgDvbtEchoThres_t* echoThres)
+{
+	u16 data                 = 0;
+	int status;
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+
+	do {
+		CHK_ERROR(Read16_0(state, OFDM_SC_RA_RAM_ECHO_THRES__A, &data));
+
+       switch (echoThres->fftMode)
+       {
+	  case DRX_FFTMODE_2K:
+	     data &= ~ OFDM_SC_RA_RAM_ECHO_THRES_2K__M;
+	     data |= ((echoThres->threshold << OFDM_SC_RA_RAM_ECHO_THRES_2K__B) &
+		(OFDM_SC_RA_RAM_ECHO_THRES_2K__M));
+	     break;
+	  case DRX_FFTMODE_8K:
+	     data &= ~ OFDM_SC_RA_RAM_ECHO_THRES_8K__M;
+	     data |= ((echoThres->threshold << OFDM_SC_RA_RAM_ECHO_THRES_8K__B) &
+		(OFDM_SC_RA_RAM_ECHO_THRES_8K__M));
+	     break;
+	  default:
+	     return -1;
+	     break;
+       }
+
+       CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_ECHO_THRES__A, data));
+       } while (0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " status - %08x\n",status));
+    }
+
+   return status;
+}
+
+static int DVBTCtrlSetSqiSpeed(struct drxk_state *state,
+			       enum DRXKCfgDvbtSqiSpeed* speed)
+{
+	int status;
+
+	switch (*speed) {
+	case DRXK_DVBT_SQI_SPEED_FAST:
+	case DRXK_DVBT_SQI_SPEED_MEDIUM:
+	case DRXK_DVBT_SQI_SPEED_SLOW:
+		break;
+	default:
+		return -EINVAL;
+	}
+	status = Write16_0 (state,SCU_RAM_FEC_PRE_RS_BER_FILTER_SH__A,
+			    (u16) *speed);
+	return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief Activate DVBT specific presets
+* \param demod instance of demodulator.
+* \return DRXStatus_t.
+*
+* Called in DVBTSetStandard
+*
+*/
+static int DVBTActivatePresets (struct drxk_state *state)
+{
+    int status;
+
+   //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+
+    struct DRXKCfgDvbtEchoThres_t echoThres2k = {0, DRX_FFTMODE_2K};
+    struct DRXKCfgDvbtEchoThres_t echoThres8k = {0, DRX_FFTMODE_8K};
+
+   do {
+	   bool setincenable = false;
+	   bool setfrenable = true;
+	   CHK_ERROR(DVBTCtrlSetIncEnable (state, &setincenable));
+	   CHK_ERROR(DVBTCtrlSetFrEnable (state, &setfrenable));
+	   CHK_ERROR(DVBTCtrlSetEchoThreshold(state,   &echoThres2k));
+	   CHK_ERROR(DVBTCtrlSetEchoThreshold(state,   &echoThres8k));
+	   CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A,
+			       state->m_dvbtIfAgcCfg.IngainTgtMax));
+   } while (0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+
+   return status;
+}
+/*============================================================================*/
+
+/**
+* \brief Initialize channelswitch-independent settings for DVBT.
+* \param demod instance of demodulator.
+* \return DRXStatus_t.
+*
+* For ROM code channel filter taps are loaded from the bootloader. For microcode
+* the DVB-T taps from the drxk_filters.h are used.
+*/
+static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode)
+{
+	u16             cmdResult   = 0;
+	u16              data = 0;
+	int    status;
+
+	//printk("%s\n", __FUNCTION__);
+
+	PowerUpDVBT(state);
+
+	do {
+		/* added antenna switch */
+		SwitchAntennaToDVBT(state);
+		/* send OFDM reset command */
+		CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM | SCU_RAM_COMMAND_CMD_DEMOD_RESET,0,NULL,1,&cmdResult));
+
+		/* send OFDM setenv command */
+		CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM | SCU_RAM_COMMAND_CMD_DEMOD_SET_ENV,0,NULL,1,&cmdResult));
+
+		/* reset datapath for OFDM, processors first */
+		CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A,     IQM_COMM_EXEC_B_STOP  ));
+
+		/* IQM setup */
+		/* synchronize on ofdstate->m_festart */
+		CHK_ERROR(Write16_0(state, IQM_AF_UPD_SEL__A,      1));
+		/* window size for clipping ADC detection */
+		CHK_ERROR(Write16_0(state, IQM_AF_CLP_LEN__A,      0));
+		/* window size for for sense pre-SAW detection */
+		CHK_ERROR(Write16_0(state, IQM_AF_SNS_LEN__A,      0));
+		/* sense threshold for sense pre-SAW detection */
+		CHK_ERROR(Write16_0(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC));
+		CHK_ERROR(SetIqmAf(state,true));
+
+		CHK_ERROR(Write16_0(state, IQM_AF_AGC_RF__A,      0));
+
+		/* Impulse noise cruncher setup */
+		CHK_ERROR(Write16_0(state, IQM_AF_INC_LCT__A,     0)); /* crunch in IQM_CF */
+		CHK_ERROR(Write16_0(state, IQM_CF_DET_LCT__A,     0)); /* detect in IQM_CF */
+		CHK_ERROR(Write16_0(state, IQM_CF_WND_LEN__A,     3)); /* peak detector window length */
+
+		CHK_ERROR(Write16_0(state, IQM_RC_STRETCH__A,    16));
+		CHK_ERROR(Write16_0(state, IQM_CF_OUT_ENA__A,   0x4)); /* enable output 2 */
+		CHK_ERROR(Write16_0(state, IQM_CF_DS_ENA__A,    0x4)); /* decimate output 2 */
+		CHK_ERROR(Write16_0(state, IQM_CF_SCALE__A,    1600));
+		CHK_ERROR(Write16_0(state, IQM_CF_SCALE_SH__A,    0));
+
+		/* virtual clipping threshold for clipping ADC detection */
+		CHK_ERROR(Write16_0(state, IQM_AF_CLP_TH__A,    448));
+		CHK_ERROR(Write16_0(state, IQM_CF_DATATH__A,    495)); /* crunching threshold */
+
+		CHK_ERROR(BLChainCmd(state,
+				      DRXK_BL_ROM_OFFSET_TAPS_DVBT,
+				      DRXK_BLCC_NR_ELEMENTS_TAPS,
+				      DRXK_BLC_TIMEOUT));
+
+		CHK_ERROR(Write16_0(state, IQM_CF_PKDTH__A,        2)); /* peak detector threshold */
+		CHK_ERROR(Write16_0(state, IQM_CF_POW_MEAS_LEN__A, 2));
+		/* enable power measurement interrupt */
+		CHK_ERROR(Write16_0(state, IQM_CF_COMM_INT_MSK__A, 1));
+		CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE));
+
+		/* IQM will not be reset from here, sync ADC and update/init AGC */
+		CHK_ERROR(ADCSynchronization(state));
+		CHK_ERROR(SetPreSaw(state, &state->m_dvbtPreSawCfg));
+
+		/* Halt SCU to enable safe non-atomic accesses */
+		CHK_ERROR(Write16_0(state,SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
+
+		CHK_ERROR(SetAgcRf(state, &state->m_dvbtRfAgcCfg, true)) ;
+		CHK_ERROR(SetAgcIf (state, &state->m_dvbtIfAgcCfg, true));
+
+		/* Set Noise Estimation notch width and enable DC fix */
+		CHK_ERROR(Read16_0(state, OFDM_SC_RA_RAM_CONFIG__A, &data));
+		data |= OFDM_SC_RA_RAM_CONFIG_NE_FIX_ENABLE__M;
+		CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_CONFIG__A, data));
+
+		/* Activate SCU to enable SCU commands */
+		CHK_ERROR(Write16_0(state,SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
+
+		if (!state->m_DRXK_A3_ROM_CODE)
+		{
+			/* AGCInit() is not done for DVBT, so set agcFastClipCtrlDelay  */
+			CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
+					    state->m_dvbtIfAgcCfg.FastClipCtrlDelay));
+		}
+
+		/* OFDM_SC setup */
+#ifdef COMPILE_FOR_NONRT
+		CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_BE_OPT_DELAY__A,        1));
+		CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_BE_OPT_INIT_DELAY__A,   2));
+#endif
+
+		/* FEC setup */
+		CHK_ERROR(Write16_0(state, FEC_DI_INPUT_CTL__A,    1));     /* OFDM input */
+
+
+#ifdef COMPILE_FOR_NONRT
+		CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A   ,  0x400));
+#else
+		CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A   , 0x1000));
+#endif
+		CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PRESCALE__A , 0x0001));
+
+		/* Setup MPEG bus */
+		CHK_ERROR(MPEGTSDtoSetup (state,OM_DVBT));
+		/* Set DVBT Presets */
+		CHK_ERROR (DVBTActivatePresets (state));
+
+	} while (0);
+
+	if (status<0)
+	{
+		printk("%s status - %08x\n",__FUNCTION__,status);
+	}
+
+	return status;
+}
+
+/*============================================================================*/
+/**
+* \brief Start dvbt demodulating for channel.
+* \param demod instance of demodulator.
+* \return DRXStatus_t.
+*/
+static int DVBTStart(struct drxk_state *state)
+{
+   u16   param1;
+
+   int status;
+//   DRXKOfdmScCmd_t   scCmd;
+
+   //printk("%s\n",__FUNCTION__);
+   /* Start correct processes to get in lock */
+   /* DRXK: OFDM_SC_RA_RAM_PROC_LOCKTRACK is no longer in mapfile! */
+    do {
+	param1 = OFDM_SC_RA_RAM_LOCKTRACK_MIN;
+	CHK_ERROR(DVBTScCommand(state,OFDM_SC_RA_RAM_CMD_PROC_START,0,OFDM_SC_RA_RAM_SW_EVENT_RUN_NMASK__M,param1,0,0,0));
+       /* Start FEC OC */
+       CHK_ERROR(MPEGTSStart(state));
+       CHK_ERROR(Write16_0(state,FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE));
+    } while (0);
+   return (status);
+}
+
+
+/*============================================================================*/
+
+/**
+* \brief Set up dvbt demodulator for channel.
+* \param demod instance of demodulator.
+* \return DRXStatus_t.
+* // original DVBTSetChannel()
+*/
+static int SetDVBT (struct drxk_state *state,u16 IntermediateFreqkHz, s32 tunerFreqOffset)
+{
+	u16  cmdResult   = 0;
+	u16  transmissionParams = 0;
+	u16  operationMode = 0;
+	u32  iqmRcRateOfs = 0;
+	u32  bandwidth = 0;
+	u16   param1;
+	int status;
+
+	//printk("%s IF =%d, TFO = %d\n",__FUNCTION__,IntermediateFreqkHz,tunerFreqOffset);
+	do {
+		CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM |
+				      SCU_RAM_COMMAND_CMD_DEMOD_STOP,
+				      0,NULL,1,&cmdResult));
+
+		/* Halt SCU to enable safe non-atomic accesses */
+		CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
+
+		/* Stop processors */
+		CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP));
+
+		/* Mandatory fix, always stop CP, required to set spl offset back to
+		   hardware default (is set to 0 by ucode during pilot detection */
+		CHK_ERROR(Write16_0(state, OFDM_CP_COMM_EXEC__A, OFDM_CP_COMM_EXEC_STOP));
+
+		/*== Write channel settings to device =====================================*/
+
+		/* mode */
+		switch(state->param.u.ofdm.transmission_mode) {
+		case TRANSMISSION_MODE_AUTO:
+		default:
+			operationMode |= OFDM_SC_RA_RAM_OP_AUTO_MODE__M;
+			/* fall through , try first guess DRX_FFTMODE_8K */
+		case TRANSMISSION_MODE_8K:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_MODE_8K;
+			break;
+		case TRANSMISSION_MODE_2K:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_MODE_2K;
+			break;
+		}
+
+		/* guard */
+		switch(state->param.u.ofdm.guard_interval) {
+		default:
+		case GUARD_INTERVAL_AUTO:
+			operationMode |= OFDM_SC_RA_RAM_OP_AUTO_GUARD__M;
+			/* fall through , try first guess DRX_GUARD_1DIV4 */
+		case GUARD_INTERVAL_1_4:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_4;
+			break;
+		case GUARD_INTERVAL_1_32:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_32;
+			break;
+		case GUARD_INTERVAL_1_16:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_16;
+			break;
+		case GUARD_INTERVAL_1_8:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_8;
+			break;
+		}
+
+		/* hierarchy */
+		switch(state->param.u.ofdm.hierarchy_information) {
+		case HIERARCHY_AUTO:
+		case 	HIERARCHY_NONE:
+		default:
+			operationMode |= OFDM_SC_RA_RAM_OP_AUTO_HIER__M;
+			/* fall through , try first guess SC_RA_RAM_OP_PARAM_HIER_NO */
+			//	transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_NO;
+			//break;
+		case 	HIERARCHY_1:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A1;
+			break;
+		case 	HIERARCHY_2:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A2;
+			break;
+		case 	HIERARCHY_4:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A4;
+			break;
+		}
+
+
+		/* constellation */
+		switch(state->param.u.ofdm.constellation) {
+		case QAM_AUTO:
+		default:
+			operationMode |= OFDM_SC_RA_RAM_OP_AUTO_CONST__M;
+			/* fall through , try first guess DRX_CONSTELLATION_QAM64 */
+		case QAM_64:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM64;
+			break;
+		case QPSK:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QPSK;
+			break;
+		case QAM_16:
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM16;
+			break;
+		}
+#if 0
+       // No hierachical channels support in BDA
+       /* Priority (only for hierarchical channels) */
+       switch (channel->priority) {
+	  case DRX_PRIORITY_LOW     :
+	     transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_LO;
+	     WR16(devAddr, OFDM_EC_SB_PRIOR__A,   OFDM_EC_SB_PRIOR_LO);
+	     break;
+	  case DRX_PRIORITY_HIGH    :
+	     transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
+	     WR16(devAddr, OFDM_EC_SB_PRIOR__A,   OFDM_EC_SB_PRIOR_HI));
+	     break;
+	  case DRX_PRIORITY_UNKNOWN : /* fall through */
+	  default:
+	     return (DRX_STS_INVALID_ARG);
+	     break;
+       }
+#else
+		// Set Priorty high
+		transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
+		CHK_ERROR(Write16_0(state, OFDM_EC_SB_PRIOR__A,   OFDM_EC_SB_PRIOR_HI));
+#endif
+
+		/* coderate */
+		switch(state->param.u.ofdm.code_rate_HP) {
+		case FEC_AUTO:
+		default:
+			operationMode |= OFDM_SC_RA_RAM_OP_AUTO_RATE__M;
+			/* fall through , try first guess DRX_CODERATE_2DIV3 */
+		case FEC_2_3  :
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_2_3;
+			break;
+		case FEC_1_2  :
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_1_2;
+			break;
+		case FEC_3_4  :
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_3_4;
+			break;
+		case FEC_5_6  :
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_5_6;
+			break;
+		case FEC_7_8  :
+			transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_7_8;
+			break;
+		}
+
+		/* SAW filter selection: normaly not necesarry, but if wanted
+		   the application can select a SAW filter via the driver by using UIOs */
+		/* First determine real bandwidth (Hz) */
+		/* Also set delay for impulse noise cruncher */
+		/* Also set parameters for EC_OC fix, note EC_OC_REG_TMD_HIL_MAR is changed
+		   by SC for fix for some 8K,1/8 guard but is restored by InitEC and ResetEC
+		   functions */
+		switch(state->param.u.ofdm.bandwidth) {
+		case BANDWIDTH_AUTO:
+		case BANDWIDTH_8_MHZ:
+			bandwidth = DRXK_BANDWIDTH_8MHZ_IN_HZ;
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 3052));
+			/* cochannel protection for PAL 8 MHz */
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A,  7));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 7));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,  7));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A, 1));
+			break;
+		case BANDWIDTH_7_MHZ:
+			bandwidth = DRXK_BANDWIDTH_7MHZ_IN_HZ;
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 3491));
+			/* cochannel protection for PAL 7 MHz */
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A, 8));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 8));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,  4));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A, 1));
+			break;
+		case BANDWIDTH_6_MHZ:
+			bandwidth = DRXK_BANDWIDTH_6MHZ_IN_HZ;
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 4073));
+			/* cochannel protection for NTSC 6 MHz */
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A,  19));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 19));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,  14));
+			CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A,  1));
+			break;
+		}
+
+		if (iqmRcRateOfs == 0)
+		{
+			/* Now compute IQM_RC_RATE_OFS
+			   (((SysFreq/BandWidth)/2)/2) -1) * 2^23)
+			   =>
+			   ((SysFreq / BandWidth) * (2^21)) - (2^23)
+			*/
+			/* (SysFreq / BandWidth) * (2^28)  */
+			/* assert (MAX(sysClk)/MIN(bandwidth) < 16)
+			   => assert(MAX(sysClk) < 16*MIN(bandwidth))
+			   => assert(109714272 > 48000000) = true so Frac 28 can be used  */
+			iqmRcRateOfs = Frac28a((u32)((state->m_sysClockFreq * 1000)/3), bandwidth);
+			/* (SysFreq / BandWidth) * (2^21), rounding before truncating  */
+			if ((iqmRcRateOfs & 0x7fL) >= 0x40)
+			{
+				iqmRcRateOfs += 0x80L;
+			}
+			iqmRcRateOfs = iqmRcRateOfs >> 7 ;
+			/* ((SysFreq / BandWidth) * (2^21)) - (2^23)  */
+			iqmRcRateOfs = iqmRcRateOfs - (1<<23);
+		}
+
+		iqmRcRateOfs &= ((((u32)IQM_RC_RATE_OFS_HI__M)<<IQM_RC_RATE_OFS_LO__W) |
+				 IQM_RC_RATE_OFS_LO__M);
+		CHK_ERROR(Write32(state, IQM_RC_RATE_OFS_LO__A, iqmRcRateOfs,0));
+
+		/* Bandwidth setting done */
+
+		//   CHK_ERROR(DVBTSetFrequencyShift(demod, channel, tunerOffset));
+		CHK_ERROR (SetFrequencyShifter (state, IntermediateFreqkHz, tunerFreqOffset, true));
+
+		/*== Start SC, write channel settings to SC ===============================*/
+
+		/* Activate SCU to enable SCU commands */
+		CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
+
+		/* Enable SC after setting all other parameters */
+		CHK_ERROR(Write16_0(state, OFDM_SC_COMM_STATE__A,    0));
+		CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A,     1));
+
+
+		CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM |
+				      SCU_RAM_COMMAND_CMD_DEMOD_START,0,NULL,1,&cmdResult));
+
+		/* Write SC parameter registers, set all AUTO flags in operation mode */
+		param1 = (OFDM_SC_RA_RAM_OP_AUTO_MODE__M  |
+			   OFDM_SC_RA_RAM_OP_AUTO_GUARD__M |
+			   OFDM_SC_RA_RAM_OP_AUTO_CONST__M |
+			   OFDM_SC_RA_RAM_OP_AUTO_HIER__M  |
+			   OFDM_SC_RA_RAM_OP_AUTO_RATE__M );
+		status = DVBTScCommand(state,OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM,0,transmissionParams,param1,0,0,0);
+		if (!state->m_DRXK_A3_ROM_CODE)
+			CHK_ERROR (DVBTCtrlSetSqiSpeed(state,&state->m_sqiSpeed));
+
+	} while(0);
+	if (status<0) {
+		//printk("%s status - %08x\n",__FUNCTION__,status);
+	}
+
+	return status;
+}
+
+
+/*============================================================================*/
+
+/**
+* \brief Retreive lock status .
+* \param demod    Pointer to demodulator instance.
+* \param lockStat Pointer to lock status structure.
+* \return DRXStatus_t.
+*
+*/
+static int GetDVBTLockStatus(struct drxk_state *state, u32 *pLockStatus)
+{
+    int status;
+    const u16 mpeg_lock_mask  = (OFDM_SC_RA_RAM_LOCK_MPEG__M |
+				  OFDM_SC_RA_RAM_LOCK_FEC__M );
+    const u16 fec_lock_mask   = (OFDM_SC_RA_RAM_LOCK_FEC__M);
+    const u16 demod_lock_mask =    OFDM_SC_RA_RAM_LOCK_DEMOD__M ;
+
+    u16 ScRaRamLock = 0;
+    u16 ScCommExec = 0;
+
+    /* driver 0.9.0 */
+    /* Check if SC is running */
+    status = Read16_0(state,  OFDM_SC_COMM_EXEC__A, &ScCommExec);
+    if (ScCommExec == OFDM_SC_COMM_EXEC_STOP)
+    {
+	    /* SC not active; return DRX_NOT_LOCKED */
+	    *pLockStatus = NOT_LOCKED;
+	    return status;
+    }
+
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+
+    status = Read16_0(state, OFDM_SC_RA_RAM_LOCK__A, &ScRaRamLock);
+
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "RamLock: %04X\n",ScRaRamLock));
+
+    if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
+	    *pLockStatus = MPEG_LOCK;
+    } else if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) {
+	    *pLockStatus = FEC_LOCK;
+    } else if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) {
+	    *pLockStatus = DEMOD_LOCK;
+    } else if (ScRaRamLock & OFDM_SC_RA_RAM_LOCK_NODVBT__M) {
+	    *pLockStatus = NEVER_LOCK;
+    } else {
+	    *pLockStatus = NOT_LOCKED;
+    }
+
+    if (status<0)
+    {
+	    //KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+
+    return status;
+}
+
+static int PowerUpQAM (struct drxk_state *state)
+{
+   DRXPowerMode_t    powerMode   = DRXK_POWER_DOWN_OFDM;
+
+
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+	    CHK_ERROR(CtrlPowerMode(state, &powerMode));
+
+    }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+
+/// Power Down QAM
+static int PowerDownQAM(struct drxk_state *state)
+{
+    u16  data = 0;
+    u16  cmdResult;
+
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+	CHK_ERROR(Read16_0(state, SCU_COMM_EXEC__A, &data));
+	if (data == SCU_COMM_EXEC_ACTIVE)
+	{
+	    /*
+		 STOP demodulator
+		 QAM and HW blocks
+	    */
+	    /* stop all comstate->m_exec */
+	    CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP));
+	    CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_STOP,0,NULL,1,&cmdResult));
+	}
+	/* powerdown AFE                   */
+	CHK_ERROR(SetIqmAf(state, false));
+   }
+    while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+/*============================================================================*/
+
+/**
+* \brief Setup of the QAM Measurement intervals for signal quality
+* \param demod instance of demod.
+* \param constellation current constellation.
+* \return DRXStatus_t.
+*
+*  NOTE:
+*  Take into account that for certain settings the errorcounters can overflow.
+*  The implementation does not check this.
+*
+*/
+static int SetQAMMeasurement(struct drxk_state *state,
+			     enum EDrxkConstellation constellation,
+			     u32 symbolRate)
+{
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ "(%d,%d) om = %d\n", constellation, symbolRate,state->m_OperationMode));
+
+	u32 fecBitsDesired   = 0;  /* BER accounting period */
+	u32 fecRsPeriodTotal = 0;  /* Total period */
+	u16 fecRsPrescale    = 0;  /* ReedSolomon Measurement Prescale */
+	u16 fecRsPeriod      = 0;  /* Value for corresponding I2C register */
+	int status = 0;
+
+	fecRsPrescale  = 1;
+
+	do {
+
+		/* fecBitsDesired = symbolRate [kHz] *
+		   FrameLenght [ms] *
+		   (constellation + 1) *
+		   SyncLoss (== 1) *
+		   ViterbiLoss (==1)
+		*/
+		switch (constellation)
+		{
+		case DRX_CONSTELLATION_QAM16:
+			fecBitsDesired = 4 * symbolRate;
+			break;
+		case DRX_CONSTELLATION_QAM32:
+			fecBitsDesired = 5 * symbolRate;
+			break;
+		case DRX_CONSTELLATION_QAM64:
+			fecBitsDesired = 6 * symbolRate;
+			break;
+		case DRX_CONSTELLATION_QAM128:
+			fecBitsDesired = 7 * symbolRate;
+			break;
+		case DRX_CONSTELLATION_QAM256:
+			fecBitsDesired = 8 * symbolRate;
+			break;
+		default:
+			status = -EINVAL;
+		}
+		CHK_ERROR(status);
+
+		fecBitsDesired /= 1000;     /* symbolRate [Hz] -> symbolRate [kHz]  */
+		fecBitsDesired *= 500; /* meas. period [ms] */
+
+		/* Annex A/C: bits/RsPeriod = 204 * 8 = 1632 */
+		/* fecRsPeriodTotal = fecBitsDesired / 1632 */
+		fecRsPeriodTotal = (fecBitsDesired / 1632UL) + 1;  /* roughly ceil*/
+
+		/* fecRsPeriodTotal =  fecRsPrescale * fecRsPeriod  */
+		fecRsPrescale = 1 + (u16) (fecRsPeriodTotal >> 16);
+		if (fecRsPrescale == 0) {
+			/* Divide by zero (though impossible) */
+			status = -1;
+		}
+		CHK_ERROR(status);
+		fecRsPeriod   = ((u16) fecRsPeriodTotal + (fecRsPrescale >> 1)) /
+			fecRsPrescale;
+
+		/* write corresponding registers */
+		CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A,   fecRsPeriod));
+		CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PRESCALE__A, fecRsPrescale));
+		CHK_ERROR(Write16_0(state, FEC_OC_SNC_FAIL_PERIOD__A,      fecRsPeriod));
+
+	} while (0);
+
+	if (status<0) {
+		printk("%s: status - %08x\n",__FUNCTION__,status);
+	}
+	return status;
+}
+
+static int SetQAM16 (struct drxk_state *state)
+{
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+       /* QAM Equalizer Setup */
+       /* Equalizer */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A,  13517));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A,  13517));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A,  13517));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A,  13517));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A,  13517));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A,  13517));
+       /* Decision Feedback Equalizer */
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A,  0));
+
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
+
+       /* QAM Slicer Settings */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM16));
+
+       /* QAM Loop Controller Coeficients */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A,     15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A,   16));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A,   20));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A,   80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A,   20));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A,   50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A,     16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A,   32));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A,     5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A,  10));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A,  10));
+
+
+       /* QAM State Machine (FSM) Thresholds */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A,       140));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A,        50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A,        95));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A,       120));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A,       230));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A,       105));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A,   4));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A,   24));
+
+
+       /* QAM FSM Tracking Parameters */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A,  (u16)  16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 220));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A,   (u16)  25));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A,   (u16)   6));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A,   (u16) -24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A,   (u16) -65));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A,   (u16)-127));
+   }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief QAM32 specific setup
+* \param demod instance of demod.
+* \return DRXStatus_t.
+*/
+static int SetQAM32 (struct drxk_state *state)
+{
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+       /* QAM Equalizer Setup */
+       /* Equalizer */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A,  6707));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A,  6707));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A,  6707));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A,  6707));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A,  6707));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A,  6707));
+
+       /* Decision Feedback Equalizer */
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A,  0));
+
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 6));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 5));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
+
+       /* QAM Slicer Settings */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM32));
+
+
+       /* QAM Loop Controller Coeficients */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A,     15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A,   16));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A,   20));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A,   80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A,   20));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A,   50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A,     16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A,     5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A,  10));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A,   0));
+
+
+       /* QAM State Machine (FSM) Thresholds */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A,        90));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A,        50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A,        80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A,       100));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A,       170));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A,       100));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A,   4));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A,   10));
+
+
+       /* QAM FSM Tracking Parameters */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A,  (u16)  12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 140));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A,   (u16)  -8));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A,   (u16) -16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A,   (u16) -26));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A,   (u16) -56));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A,   (u16) -86));
+   }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief QAM64 specific setup
+* \param demod instance of demod.
+* \return DRXStatus_t.
+*/
+static int SetQAM64 (struct drxk_state *state)
+{
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+       /* QAM Equalizer Setup */
+       /* Equalizer */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A,  13336));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A,  12618));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A,  11988));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A,  13809));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A,  13809));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A,  15609));
+
+       /* Decision Feedback Equalizer */
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A,  4));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A,  4));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A,  4));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A,  4));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A,  0));
+
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
+
+       /* QAM Slicer Settings */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM64));
+
+
+       /* QAM Loop Controller Coeficients */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A,     15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A,   16));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A,   30));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A,  100));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A,   30));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A,   50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A,     16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A,   25));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A,   48));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A,     5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A,  10));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A,  10));
+
+
+       /* QAM State Machine (FSM) Thresholds */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A,       100));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A,        60));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A,        80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A,       110));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A,       200));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A,        95));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A,   4));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A,   15));
+
+
+       /* QAM FSM Tracking Parameters */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A,  (u16)  12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 141));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A,   (u16)   7));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A,   (u16)   0));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A,   (u16) -15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A,   (u16) -45));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A,   (u16) -80));
+   }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief QAM128 specific setup
+* \param demod: instance of demod.
+* \return DRXStatus_t.
+*/
+static int SetQAM128(struct drxk_state *state)
+{
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+       /* QAM Equalizer Setup */
+       /* Equalizer */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A,  6564));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A,  6598));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A,  6394));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A,  6409));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A,  6656));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A,  7238));
+
+       /* Decision Feedback Equalizer */
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A,  6));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A,  6));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A,  6));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A,  6));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A,  5));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A,  0));
+
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 6));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 5));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
+
+
+       /* QAM Slicer Settings */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A,DRXK_QAM_SL_SIG_POWER_QAM128));
+
+
+       /* QAM Loop Controller Coeficients */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A,     15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A,   16));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A,  120));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A,   60));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A,     16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A,   25));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A,   64));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A,     5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A,  10));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A,   0));
+
+
+       /* QAM State Machine (FSM) Thresholds */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A,        50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A,        60));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A,        80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A,       100));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A,       140));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A,       100));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A,   5));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A,    12));
+
+       /* QAM FSM Tracking Parameters */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A,  (u16)   8));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16)  65));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A,   (u16)   5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A,   (u16)   3));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A,   (u16)  -1));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A,   (u16) -12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A,   (u16) -23));
+   }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief QAM256 specific setup
+* \param demod: instance of demod.
+* \return DRXStatus_t.
+*/
+static int SetQAM256(struct drxk_state *state)
+{
+    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+    int status = 0;
+    do
+    {
+       /* QAM Equalizer Setup */
+       /* Equalizer */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A,  11502));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A,  12084));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A,  12543));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A,  12931));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A,  13629));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A,  15385));
+
+       /* Decision Feedback Equalizer */
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A,  8));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A,  8));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A,  8));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A,  8));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 6));
+       CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
+
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
+       CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
+
+       /* QAM Slicer Settings */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A,DRXK_QAM_SL_SIG_POWER_QAM256));
+
+
+       /* QAM Loop Controller Coeficients */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A,     15));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A,   24));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A,     12));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A,   16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A,   16));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A,   50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A,  250));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A,      5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A,   50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A,  125));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A,     16));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A,   25));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A,   48));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A,     5));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A,  10));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A,  10));
+
+
+       /* QAM State Machine (FSM) Thresholds */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A,        50));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A,        60));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A,        80));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A,       100));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A,       150));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A,       110));
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A,   40));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A,   4));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A,   12));
+
+
+       /* QAM FSM Tracking Parameters */
+
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A,  (u16)   8));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16)  74));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A,   (u16)  18));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A,   (u16)  13));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A,   (u16)   7));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A,   (u16)   0));
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A,   (u16)  -8));
+   }while(0);
+
+    if (status<0)
+    {
+	//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+    }
+    return status;
+}
+
+
+/*============================================================================*/
+/**
+* \brief Reset QAM block.
+* \param demod:   instance of demod.
+* \param channel: pointer to channel data.
+* \return DRXStatus_t.
+*/
+static int QAMResetQAM(struct drxk_state *state)
+{
+    int    status;
+    u16  cmdResult;
+
+    //printk("%s\n", __FUNCTION__);
+    do
+    {
+       /* Stop QAM comstate->m_exec */
+	CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP));
+
+	CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_RESET,0,NULL,1,&cmdResult));
+    } while (0);
+
+   /* All done, all OK */
+   return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief Set QAM symbolrate.
+* \param demod:   instance of demod.
+* \param channel: pointer to channel data.
+* \return DRXStatus_t.
+*/
+static int QAMSetSymbolrate(struct drxk_state *state)
+{
+    u32   adcFrequency = 0;
+    u32   symbFreq = 0;
+    u32   iqmRcRate  = 0;
+    u16  ratesel = 0;
+    u32   lcSymbRate = 0;
+    int    status;
+
+    do
+    {
+       /* Select & calculate correct IQM rate */
+       adcFrequency = (state->m_sysClockFreq * 1000) / 3;
+       ratesel = 0;
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " state->m_SymbolRate = %d\n",state->m_SymbolRate));
+       //printk("SR %d\n", state->param.u.qam.symbol_rate);
+       if (state->param.u.qam.symbol_rate <= 1188750)
+       {
+	  ratesel = 3;
+       }
+       else if (state->param.u.qam.symbol_rate <= 2377500)
+       {
+	  ratesel = 2;
+       }
+       else if (state->param.u.qam.symbol_rate  <= 4755000)
+       {
+	  ratesel = 1;
+       }
+       CHK_ERROR(Write16_0(state,IQM_FD_RATESEL__A, ratesel));
+
+       /*
+	   IqmRcRate = ((Fadc / (symbolrate * (4<<ratesel))) - 1) * (1<<23)
+       */
+       symbFreq = state->param.u.qam.symbol_rate * (1 << ratesel);
+       if (symbFreq == 0)
+       {
+	  /* Divide by zero */
+	   return -1;
+       }
+       iqmRcRate = (adcFrequency / symbFreq) * (1 << 21) +
+		   (Frac28a((adcFrequency % symbFreq), symbFreq) >> 7) -
+		   (1 << 23);
+       CHK_ERROR(Write32(state, IQM_RC_RATE_OFS_LO__A, iqmRcRate,0));
+	state->m_iqmRcRate = iqmRcRate;
+       /*
+	   LcSymbFreq = round (.125 *  symbolrate / adcFreq * (1<<15))
+       */
+	symbFreq = state->param.u.qam.symbol_rate;
+       if (adcFrequency == 0)
+       {
+	  /* Divide by zero */
+	  return -1;
+       }
+       lcSymbRate = (symbFreq / adcFrequency) * (1 << 12) +
+		    (Frac28a((symbFreq % adcFrequency), adcFrequency) >> 16);
+       if (lcSymbRate > 511)
+       {
+	  lcSymbRate = 511;
+       }
+       CHK_ERROR(Write16_0(state, QAM_LC_SYMBOL_FREQ__A, (u16) lcSymbRate));
+    } while (0);
+
+    return status;
+}
+
+/*============================================================================*/
+
+/**
+* \brief Get QAM lock status.
+* \param demod:   instance of demod.
+* \param channel: pointer to channel data.
+* \return DRXStatus_t.
+*/
+
+static int GetQAMLockStatus(struct drxk_state *state, u32 *pLockStatus)
+{
+	int status;
+	u16 Result[2] = {0,0};
+
+	status = scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM|SCU_RAM_COMMAND_CMD_DEMOD_GET_LOCK, 0, NULL, 2, Result);
+	if (status<0)
+	{
+		printk("%s status = %08x\n",__FUNCTION__,status);
+	}
+	if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_DEMOD_LOCKED)
+	{
+		/* 0x0000 NOT LOCKED */
+		*pLockStatus = NOT_LOCKED;
+	}
+	else if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_LOCKED)
+	{
+		/* 0x4000 DEMOD LOCKED */
+		*pLockStatus = DEMOD_LOCK;
+	}
+	else if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_NEVER_LOCK)
+	{
+		/* 0x8000 DEMOD + FEC LOCKED (system lock) */
+		*pLockStatus = MPEG_LOCK;
+	}
+	else
+	{
+		/* 0xC000 NEVER LOCKED */
+		/* (system will never be able to lock to the signal) */
+		/* TODO: check this, intermediate & standard specific lock states are not
+		   taken into account here */
+		*pLockStatus = NEVER_LOCK;
+	}
+	return status;
+}
+
+#define QAM_MIRROR__M         0x03
+#define QAM_MIRROR_NORMAL     0x00
+#define QAM_MIRRORED          0x01
+#define QAM_MIRROR_AUTO_ON    0x02
+#define QAM_LOCKRANGE__M      0x10
+#define QAM_LOCKRANGE_NORMAL  0x10
+
+static int SetQAM(struct drxk_state *state,u16 IntermediateFreqkHz, s32 tunerFreqOffset)
+{
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+	int status = 0;
+	u8 parameterLen;
+	u16  setEnvParameters[5];
+	u16  setParamParameters[4]={0,0,0,0};
+	u16  cmdResult;
+
+	//printk("%s\n", __FUNCTION__);
+
+	do {
+		/*
+		  STEP 1: reset demodulator
+		  resets FEC DI and FEC RS
+		  resets QAM block
+		  resets SCU variables
+		*/
+		CHK_ERROR(Write16_0(state, FEC_DI_COMM_EXEC__A, FEC_DI_COMM_EXEC_STOP));
+		CHK_ERROR(Write16_0(state, FEC_RS_COMM_EXEC__A, FEC_RS_COMM_EXEC_STOP));
+		CHK_ERROR(QAMResetQAM(state));
+
+		/*
+		  STEP 2: configure demodulator
+		  -set env
+		  -set params; resets IQM,QAM,FEC HW; initializes some SCU variables
+		*/
+		CHK_ERROR(QAMSetSymbolrate(state));
+
+		/* Env parameters */
+		setEnvParameters[2] = QAM_TOP_ANNEX_A;               /* Annex        */
+		if (state->m_OperationMode == OM_QAM_ITU_C)
+		{
+			setEnvParameters[2] = QAM_TOP_ANNEX_C;            /* Annex        */
+		}
+		setParamParameters[3] |= (QAM_MIRROR_AUTO_ON);
+// check for LOCKRANGE Extented
+		//       setParamParameters[3] |= QAM_LOCKRANGE_NORMAL;
+		parameterLen = 4;
+
+		/* Set params */
+		switch(state->param.u.qam.modulation)
+		{
+		case QAM_256:
+			state->m_Constellation = DRX_CONSTELLATION_QAM256;
+			break;
+		case QAM_AUTO:
+		case QAM_64:
+			state->m_Constellation = DRX_CONSTELLATION_QAM64;
+			break;
+		case QAM_16:
+			state->m_Constellation = DRX_CONSTELLATION_QAM16;
+			break;
+		case QAM_32:
+			state->m_Constellation = DRX_CONSTELLATION_QAM32;
+			break;
+		case QAM_128:
+			state->m_Constellation = DRX_CONSTELLATION_QAM128;
+			break;
+		default:
+			status = -EINVAL;
+			break;
+		}
+		CHK_ERROR(status);
+		setParamParameters[0] = state->m_Constellation;      /* constellation     */
+		setParamParameters[1] = DRXK_QAM_I12_J17;            /* interleave mode   */
+
+		CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_SET_PARAM,4,setParamParameters,1,&cmdResult));
+
+
+		/* STEP 3: enable the system in a mode where the ADC provides valid signal
+		   setup constellation independent registers */
+//       CHK_ERROR (SetFrequency (channel, tunerFreqOffset));
+		CHK_ERROR (SetFrequencyShifter (state, IntermediateFreqkHz, tunerFreqOffset, true));
+
+		/* Setup BER measurement */
+		CHK_ERROR(SetQAMMeasurement (state,
+					      state->m_Constellation,
+					       state->param.u.qam.symbol_rate));
+
+		/* Reset default values */
+       CHK_ERROR(Write16_0(state, IQM_CF_SCALE_SH__A, IQM_CF_SCALE_SH__PRE));
+       CHK_ERROR(Write16_0(state, QAM_SY_TIMEOUT__A,  QAM_SY_TIMEOUT__PRE));
+
+       /* Reset default LC values */
+       CHK_ERROR(Write16_0(state, QAM_LC_RATE_LIMIT__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_LC_LPF_FACTORP__A, 4));
+       CHK_ERROR(Write16_0(state, QAM_LC_LPF_FACTORI__A, 4));
+       CHK_ERROR(Write16_0(state, QAM_LC_MODE__A,        7));
+
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB0__A,   1));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB1__A,   1));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB2__A,   1));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB3__A,   1));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB4__A,   2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB5__A,   2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB6__A,   2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB8__A,   2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB9__A,   2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB10__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB12__A,  2));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB15__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB16__A,  3));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB20__A,  4));
+       CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB25__A,  4));
+
+       /* Mirroring, QAM-block starting point not inverted */
+       CHK_ERROR(Write16_0(state, QAM_SY_SP_INV__A, QAM_SY_SP_INV_SPECTRUM_INV_DIS));
+
+       /* Halt SCU to enable safe non-atomic accesses */
+       CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
+
+       /* STEP 4: constellation specific setup */
+       switch (state->param.u.qam.modulation)
+       {
+       case QAM_16:
+	       CHK_ERROR(SetQAM16(state));
+	       break;
+       case QAM_32:
+	       CHK_ERROR(SetQAM32(state));
+	       break;
+       case QAM_AUTO:
+       case QAM_64:
+	       CHK_ERROR(SetQAM64(state));
+	       break;
+       case QAM_128:
+	       CHK_ERROR(SetQAM128(state));
+	       break;
+       case QAM_256:
+	       //printk("SETQAM256\n");
+	       CHK_ERROR(SetQAM256(state));
+	       break;
+       default:
+	       return -1;
+	     break;
+       } /* switch */
+       /* Activate SCU to enable SCU commands */
+       CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
+
+
+       /* Re-configure MPEG output, requires knowledge of channel bitrate */
+//       extAttr->currentChannel.constellation = channel->constellation;
+//       extAttr->currentChannel.symbolrate    = channel->symbolrate;
+       CHK_ERROR(MPEGTSDtoSetup(state, state->m_OperationMode));
+
+       /* Start processes */
+       CHK_ERROR(MPEGTSStart(state));
+       CHK_ERROR(Write16_0(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE));
+       CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_ACTIVE));
+       CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE));
+
+       /* STEP 5: start QAM demodulator (starts FEC, QAM and IQM HW) */
+       CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM |
+			     SCU_RAM_COMMAND_CMD_DEMOD_START,0,
+			     NULL,1,&cmdResult));
+
+       /* update global DRXK data container */
+//?       extAttr->qamInterleaveMode = DRXK_QAM_I12_J17;
+
+   /* All done, all OK */
+   } while(0);
+
+    if (status<0) {
+	    printk("%s %d\n", __FUNCTION__, status);
+    }
+    return status;
+}
+
+static int SetQAMStandard(struct drxk_state *state, enum OperationMode oMode)
+{
+#ifdef DRXK_QAM_TAPS
+#define DRXK_QAMA_TAPS_SELECT
+#include "drxk_filters.h"
+#undef DRXK_QAMA_TAPS_SELECT
+#else
+   int          status;
+#endif
+
+   //printk("%s\n", __FUNCTION__);
+   do
+   {
+	/* added antenna switch */
+	SwitchAntennaToQAM(state);
+
+       /* Ensure correct power-up mode */
+       CHK_ERROR(PowerUpQAM(state));
+	/* Reset QAM block */
+       CHK_ERROR(QAMResetQAM(state));
+
+       /* Setup IQM */
+
+       CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP));
+       CHK_ERROR(Write16_0(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC));
+
+       /* Upload IQM Channel Filter settings by
+	  boot loader from ROM table */
+       switch (oMode)
+       {
+	  case OM_QAM_ITU_A:
+		  CHK_ERROR(BLChainCmd(state,
+				    DRXK_BL_ROM_OFFSET_TAPS_ITU_A,
+				    DRXK_BLCC_NR_ELEMENTS_TAPS,
+				    DRXK_BLC_TIMEOUT));
+	     break;
+	  case OM_QAM_ITU_C:
+		  CHK_ERROR(BLDirectCmd(state, IQM_CF_TAP_RE0__A,
+				       DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
+				       DRXK_BLDC_NR_ELEMENTS_TAPS,
+				       DRXK_BLC_TIMEOUT));
+		  CHK_ERROR(BLDirectCmd(state, IQM_CF_TAP_IM0__A,
+				       DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
+				       DRXK_BLDC_NR_ELEMENTS_TAPS,
+				       DRXK_BLC_TIMEOUT));
+	     break;
+	  default:
+		  status=-EINVAL;
+       }
+       CHK_ERROR (status);
+
+       CHK_ERROR(Write16_0(state, IQM_CF_OUT_ENA__A,
+			   (1 << IQM_CF_OUT_ENA_QAM__B)));
+       CHK_ERROR(Write16_0(state, IQM_CF_SYMMETRIC__A, 0));
+       CHK_ERROR(Write16_0(state, IQM_CF_MIDTAP__A,
+			   ((1 << IQM_CF_MIDTAP_RE__B) |
+			    (1 << IQM_CF_MIDTAP_IM__B))));
+
+       CHK_ERROR(Write16_0(state, IQM_RC_STRETCH__A,       21));
+       CHK_ERROR(Write16_0(state, IQM_AF_CLP_LEN__A,        0));
+       CHK_ERROR(Write16_0(state, IQM_AF_CLP_TH__A,       448));
+       CHK_ERROR(Write16_0(state, IQM_AF_SNS_LEN__A,        0));
+       CHK_ERROR(Write16_0(state, IQM_CF_POW_MEAS_LEN__A,   0));
+
+       CHK_ERROR(Write16_0(state, IQM_FS_ADJ_SEL__A,        1));
+       CHK_ERROR(Write16_0(state, IQM_RC_ADJ_SEL__A,        1));
+       CHK_ERROR(Write16_0(state, IQM_CF_ADJ_SEL__A,        1));
+       CHK_ERROR(Write16_0(state, IQM_AF_UPD_SEL__A,        0));
+
+       /* IQM Impulse Noise Processing Unit */
+       CHK_ERROR(Write16_0(state, IQM_CF_CLP_VAL__A,    500));
+       CHK_ERROR(Write16_0(state, IQM_CF_DATATH__A,    1000));
+       CHK_ERROR(Write16_0(state, IQM_CF_BYPASSDET__A,    1));
+       CHK_ERROR(Write16_0(state, IQM_CF_DET_LCT__A,      0));
+       CHK_ERROR(Write16_0(state, IQM_CF_WND_LEN__A,      1));
+       CHK_ERROR(Write16_0(state, IQM_CF_PKDTH__A,        1));
+       CHK_ERROR(Write16_0(state, IQM_AF_INC_BYPASS__A,   1));
+
+       /* turn on IQMAF. Must be done before setAgc**() */
+       CHK_ERROR(SetIqmAf(state, true));
+       CHK_ERROR(Write16_0(state, IQM_AF_START_LOCK__A, 0x01));
+
+       /* IQM will not be reset from here, sync ADC and update/init AGC */
+       CHK_ERROR(ADCSynchronization (state));
+
+       /* Set the FSM step period */
+       CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_STEP_PERIOD__A, 2000));
+
+       /* Halt SCU to enable safe non-atomic accesses */
+       CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
+
+       /* No more resets of the IQM, current standard correctly set =>
+	  now AGCs can be configured. */
+
+       CHK_ERROR(InitAGC(state,true));
+       CHK_ERROR(SetPreSaw(state, &(state->m_qamPreSawCfg)));
+
+       /* Configure AGC's */
+       CHK_ERROR(SetAgcRf(state, &(state->m_qamRfAgcCfg), true));
+       CHK_ERROR(SetAgcIf (state, &(state->m_qamIfAgcCfg), true));
+
+       /* Activate SCU to enable SCU commands */
+       CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
+   } while (0);
+   return status;
+}
+
+static int WriteGPIO(struct drxk_state *state)
+{
+   int status;
+   u16            value       = 0;
+
+   do {
+	   /* stop lock indicator process */
+	   CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
+			       SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+
+	   /*  Write magic word to enable pdr reg write               */
+	   CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A,
+			       SIO_TOP_COMM_KEY_KEY));
+
+	   if (state->m_hasSAWSW) {
+		   /* write to io pad configuration register - output mode */
+		   CHK_ERROR(Write16_0(state, SIO_PDR_SMA_TX_CFG__A,
+				       state->m_GPIOCfg));
+
+		   /* use corresponding bit in io data output registar */
+		   CHK_ERROR(Read16_0(state, SIO_PDR_UIO_OUT_LO__A, &value));
+		   if (state->m_GPIO == 0) {
+			   value &= 0x7FFF; /* write zero to 15th bit - 1st UIO */
+		   } else {
+			   value |= 0x8000; /* write one to 15th bit - 1st UIO */
+		   }
+		   /* write back to io data output register */
+		   CHK_ERROR(Write16_0(state, SIO_PDR_UIO_OUT_LO__A, value));
+
+	   }
+	   /*  Write magic word to disable pdr reg write               */
+	   CHK_ERROR(Write16_0(state,   SIO_TOP_COMM_KEY__A,    0x0000));
+   } while (0);
+   return status;
+}
+
+static int SwitchAntennaToQAM(struct drxk_state *state)
+{
+    int status = -1;
+
+    if (state->m_AntennaSwitchDVBTDVBC != 0) {
+	    if (state->m_GPIO != state->m_AntennaDVBC) {
+		    state->m_GPIO = state->m_AntennaDVBC;
+		    status = WriteGPIO(state);
+	    }
+    }
+    return status;
+}
+
+static int SwitchAntennaToDVBT(struct drxk_state *state)
+{
+	int status = -1;
+	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+	if (state->m_AntennaSwitchDVBTDVBC != 0) {
+		if (state->m_GPIO != state->m_AntennaDVBT) {
+			state->m_GPIO = state->m_AntennaDVBT;
+			status = WriteGPIO(state);
+		}
+	}
+	return status;
+}
+
+
+static int PowerDownDevice(struct drxk_state *state)
+{
+	/* Power down to requested mode */
+	/* Backup some register settings */
+	/* Set pins with possible pull-ups connected to them in input mode */
+	/* Analog power down */
+	/* ADC power down */
+	/* Power down device */
+	int status;
+	do {
+		if (state->m_bPDownOpenBridge) {
+			// Open I2C bridge before power down of DRXK
+			CHK_ERROR(ConfigureI2CBridge(state, true));
+		}
+		// driver 0.9.0
+		CHK_ERROR(DVBTEnableOFDMTokenRing(state, false));
+
+		CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A, SIO_CC_PWD_MODE_LEVEL_CLOCK));
+		CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A  , SIO_CC_UPDATE_KEY));
+		state->m_HICfgCtrl |= SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
+		CHK_ERROR(HI_CfgCommand(state));
+	}
+	while(0);
+
+	if (status<0) {
+		//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
+		return -1;
+	}
+	return 0;
+}
+
+static int load_microcode(struct drxk_state *state, char *mc_name)
+{
+	const struct firmware *fw = NULL;
+	int err=0;
+
+	err = request_firmware(&fw, mc_name, state->i2c->dev.parent);
+	if (err < 0) {
+		printk(KERN_ERR
+			": Could not load firmware file %s.\n", mc_name);
+		printk(KERN_INFO
+			": Copy %s to your hotplug directory!\n", mc_name);
+		return err;
+	}
+	err=DownloadMicrocode(state, fw->data, fw->size);
+	release_firmware(fw);
+	return err;
+}
+
+static int init_drxk(struct drxk_state *state)
+{
+	int status;
+	DRXPowerMode_t  powerMode = DRXK_POWER_DOWN_OFDM;
+	u16 driverVersion;
+
+	//printk("init_drxk\n");
+	if ((state->m_DrxkState == DRXK_UNINITIALIZED)) {
+		do {
+			CHK_ERROR(PowerUpDevice(state));
+			CHK_ERROR (DRXX_Open(state));
+			/* Soft reset of OFDM-, sys- and osc-clockdomain */
+			CHK_ERROR(Write16_0(state, SIO_CC_SOFT_RST__A,
+					   SIO_CC_SOFT_RST_OFDM__M  |
+					   SIO_CC_SOFT_RST_SYS__M   |
+					   SIO_CC_SOFT_RST_OSC__M));
+			CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A,       SIO_CC_UPDATE_KEY));
+			/* TODO is this needed, if yes how much delay in worst case scenario */
+			msleep(1);
+			state->m_DRXK_A3_PATCH_CODE = true;
+			CHK_ERROR(GetDeviceCapabilities(state));
+
+			/* Bridge delay, uses oscilator clock */
+			/* Delay = (delay (nano seconds) * oscclk (kHz))/ 1000 */
+			/* SDA brdige delay */
+			state->m_HICfgBridgeDelay = (u16)((state->m_oscClockFreq/1000)* HI_I2C_BRIDGE_DELAY)/1000;
+			/* Clipping */
+			if (state->m_HICfgBridgeDelay > SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M)
+			{
+				state->m_HICfgBridgeDelay = SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M;
+			}
+			/* SCL bridge delay, same as SDA for now */
+			state->m_HICfgBridgeDelay += state->m_HICfgBridgeDelay << SIO_HI_RA_RAM_PAR_3_CFG_DBL_SCL__B;
+
+			CHK_ERROR(InitHI(state));
+			/* disable various processes */
+#if NOA1ROM
+			if (!(state->m_DRXK_A1_ROM_CODE) && !(state->m_DRXK_A2_ROM_CODE) )
+#endif
+			{
+				CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A, SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
+			}
+
+			/* disable MPEG port */
+			CHK_ERROR(MPEGTSDisable(state));
+
+			/* Stop AUD and SCU */
+			CHK_ERROR(Write16_0(state, AUD_COMM_EXEC__A, AUD_COMM_EXEC_STOP));
+			CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_STOP));
+
+			/* enable token-ring bus through OFDM block for possible ucode upload */
+			CHK_ERROR(Write16_0(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, SIO_OFDM_SH_OFDM_RING_ENABLE_ON));
+
+			/* include boot loader section */
+			CHK_ERROR(Write16_0(state, SIO_BL_COMM_EXEC__A, SIO_BL_COMM_EXEC_ACTIVE));
+			CHK_ERROR(BLChainCmd(state, 0, 6, 100));
+
+#if 0
+			if (state->m_DRXK_A3_PATCH_CODE)
+				CHK_ERROR(DownloadMicrocode(state,
+							     DRXK_A3_microcode,
+							     DRXK_A3_microcode_length));
+#else
+			load_microcode(state, "drxk_a3.mc");
+#endif
+#if NOA1ROM
+			if (state->m_DRXK_A2_PATCH_CODE)
+				CHK_ERROR(DownloadMicrocode(state,
+							     DRXK_A2_microcode,
+							     DRXK_A2_microcode_length));
+#endif
+			/* disable token-ring bus through OFDM block for possible ucode upload */
+			CHK_ERROR(Write16_0(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, SIO_OFDM_SH_OFDM_RING_ENABLE_OFF));
+
+			/* Run SCU for a little while to initialize microcode version numbers */
+			CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
+			CHK_ERROR (DRXX_Open(state));
+			// added for test
+			msleep(30);
+
+			powerMode = DRXK_POWER_DOWN_OFDM;
+			CHK_ERROR(CtrlPowerMode(state, &powerMode));
+
+			/* Stamp driver version number in SCU data RAM in BCD code
+			   Done to enable field application engineers to retreive drxdriver version
+			   via I2C from SCU RAM.
+			   Not using SCU command interface for SCU register access since no
+			   microcode may be present.
+			*/
+			driverVersion = (((DRXK_VERSION_MAJOR/100) % 10) << 12) +
+				(((DRXK_VERSION_MAJOR/10)  % 10) <<  8) +
+				((DRXK_VERSION_MAJOR%10)        <<  4) +
+				(DRXK_VERSION_MINOR%10);
+			CHK_ERROR(Write16_0(state,  SCU_RAM_DRIVER_VER_HI__A, driverVersion ));
+			driverVersion = (((DRXK_VERSION_PATCH/1000) % 10) << 12) +
+				(((DRXK_VERSION_PATCH/100)  % 10) <<  8) +
+				(((DRXK_VERSION_PATCH/10)   % 10) <<  4) +
+				(DRXK_VERSION_PATCH%10);
+			CHK_ERROR(Write16_0(state, SCU_RAM_DRIVER_VER_LO__A, driverVersion ));
+
+			printk("DRXK driver version:%d.%d.%d\n",
+			       DRXK_VERSION_MAJOR,DRXK_VERSION_MINOR,DRXK_VERSION_PATCH);
+
+			/* Dirty fix of default values for ROM/PATCH microcode
+			   Dirty because this fix makes it impossible to setup suitable values
+			   before calling DRX_Open. This solution requires changes to RF AGC speed
+			   to be done via the CTRL function after calling DRX_Open */
+
+			//              m_dvbtRfAgcCfg.speed=3;
+
+			/* Reset driver debug flags to 0 */
+			CHK_ERROR(Write16_0(state, SCU_RAM_DRIVER_DEBUG__A, 0));
+			/* driver 0.9.0 */
+			/* Setup FEC OC:
+			   NOTE: No more full FEC resets allowed afterwards!! */
+			CHK_ERROR(Write16_0(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_STOP));
+			// MPEGTS functions are still the same
+			CHK_ERROR(MPEGTSDtoInit(state));
+			CHK_ERROR(MPEGTSStop(state));
+			CHK_ERROR(MPEGTSConfigurePolarity(state));
+			CHK_ERROR(MPEGTSConfigurePins(state, state->m_enableMPEGOutput));
+			// added: configure GPIO
+			CHK_ERROR(WriteGPIO(state));
+
+			state->m_DrxkState     = DRXK_STOPPED;
+
+			if (state->m_bPowerDown) {
+				CHK_ERROR(PowerDownDevice(state));
+				state->m_DrxkState     = DRXK_POWERED_DOWN;
+			}
+			else
+				state->m_DrxkState     = DRXK_STOPPED;
+		} while(0);
+		//printk("%s=%d\n", __FUNCTION__, status);
+	}
+	else
+	{
+		//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " - Init already done\n"));
+	}
+
+	return 0;
+}
+
+static void drxk_c_release(struct dvb_frontend* fe)
+{
+	struct drxk_state *state=fe->demodulator_priv;
+	printk("%s\n", __FUNCTION__);
+	kfree(state);
+}
+
+static int drxk_c_init (struct dvb_frontend *fe)
+{
+	struct drxk_state *state=fe->demodulator_priv;
+
+	if (mutex_trylock(&state->ctlock)==0)
+		return -EBUSY;
+	SetOperationMode(state, OM_QAM_ITU_A);
+	return 0;
+}
+
+static int drxk_c_sleep(struct dvb_frontend* fe)
+{
+	struct drxk_state *state=fe->demodulator_priv;
+
+	ShutDown(state);
+	mutex_unlock(&state->ctlock);
+	return 0;
+}
+
+static int drxk_gate_ctrl(struct dvb_frontend* fe, int enable)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+
+	//printk("drxk_gate %d\n", enable);
+	return ConfigureI2CBridge(state, enable ? true : false);
+}
+
+static int drxk_set_parameters (struct dvb_frontend *fe,
+				struct dvb_frontend_parameters *p)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+	u32 IF;
+
+	//printk("%s\n", __FUNCTION__);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+	if (fe->ops.tuner_ops.set_params)
+		fe->ops.tuner_ops.set_params(fe, p);
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+	state->param=*p;
+	fe->ops.tuner_ops.get_frequency(fe, &IF);
+	Start(state, 0, IF);
+
+	//printk("%s IF=%d done\n", __FUNCTION__, IF);
+	return 0;
+}
+
+static int drxk_c_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
+{
+	//struct drxk_state *state = fe->demodulator_priv;
+	//printk("%s\n", __FUNCTION__);
+	return 0;
+}
+
+static int drxk_read_status(struct dvb_frontend *fe, fe_status_t *status)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+	u32 stat;
+
+	*status=0;
+	GetLockStatus(state, &stat, 0);
+	if (stat==MPEG_LOCK)
+		*status|=0x1f;
+	if (stat==FEC_LOCK)
+		*status|=0x0f;
+	if (stat==DEMOD_LOCK)
+		*status|=0x07;
+	return 0;
+}
+
+static int drxk_read_ber(struct dvb_frontend *fe, u32 *ber)
+{
+	//struct drxk_state *state = fe->demodulator_priv;
+	*ber=0;
+	return 0;
+}
+
+static int drxk_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+	u32 val;
+
+	ReadIFAgc(state, &val);
+	*strength = val & 0xffff;;
+	return 0;
+}
+
+static int drxk_read_snr(struct dvb_frontend *fe, u16 *snr)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+	s32 snr2;
+
+	GetSignalToNoise(state, &snr2);
+	*snr = snr2&0xffff;
+	return 0;
+}
+
+static int drxk_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
+{
+	struct drxk_state *state = fe->demodulator_priv;
+	u16 err;
+
+	DVBTQAMGetAccPktErr(state, &err);
+	*ucblocks = (u32) err;
+	return 0;
+}
+
+static int drxk_c_get_tune_settings(struct dvb_frontend *fe,
+				    struct dvb_frontend_tune_settings *sets)
+{
+	sets->min_delay_ms=3000;
+	sets->max_drift=0;
+	sets->step_size=0;
+	return 0;
+}
+
+static void drxk_t_release(struct dvb_frontend* fe)
+{
+	//struct drxk_state *state=fe->demodulator_priv;
+	//printk("%s\n", __FUNCTION__);
+	//kfree(state);
+}
+
+static int drxk_t_init (struct dvb_frontend *fe)
+{
+	struct drxk_state *state=fe->demodulator_priv;
+	if (mutex_trylock(&state->ctlock)==0)
+		return -EBUSY;
+	//printk("%s\n", __FUNCTION__);
+	SetOperationMode(state, OM_DVBT);
+	//printk("%s done\n", __FUNCTION__);
+	return 0;
+}
+
+static int drxk_t_sleep(struct dvb_frontend* fe)
+{
+	struct drxk_state *state=fe->demodulator_priv;
+	mutex_unlock(&state->ctlock);
+	return 0;
+}
+
+static int drxk_t_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
+{
+	//struct drxk_state *state = fe->demodulator_priv;
+	//printk("%s\n", __FUNCTION__);
+	return 0;
+}
+
+static struct dvb_frontend_ops drxk_c_ops = {
+	.info = {
+		.name = "DRXK DVB-C",
+		.type = FE_QAM,
+		.frequency_stepsize = 62500,
+		.frequency_min = 47000000,
+		.frequency_max = 862000000,
+		.symbol_rate_min = 870000,
+		.symbol_rate_max = 11700000,
+		.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
+			FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO
+	},
+	.release = drxk_c_release,
+	.init = drxk_c_init,
+	.sleep = drxk_c_sleep,
+	.i2c_gate_ctrl = drxk_gate_ctrl,
+
+	.set_frontend = drxk_set_parameters,
+	.get_frontend = drxk_c_get_frontend,
+	.get_tune_settings = drxk_c_get_tune_settings,
+
+	.read_status = drxk_read_status,
+	.read_ber = drxk_read_ber,
+	.read_signal_strength = drxk_read_signal_strength,
+	.read_snr = drxk_read_snr,
+	.read_ucblocks = drxk_read_ucblocks,
+};
+
+static struct dvb_frontend_ops drxk_t_ops = {
+	.info = {
+		.name			= "DRXK DVB-T",
+		.type			= FE_OFDM,
+		.frequency_min		= 47125000,
+		.frequency_max		= 865000000,
+		.frequency_stepsize	= 166667,
+		.frequency_tolerance	= 0,
+		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
+		FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
+		FE_CAN_FEC_AUTO |
+		FE_CAN_QAM_16 | FE_CAN_QAM_64 |
+		FE_CAN_QAM_AUTO |
+		FE_CAN_TRANSMISSION_MODE_AUTO |
+		FE_CAN_GUARD_INTERVAL_AUTO |
+		FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
+		FE_CAN_MUTE_TS
+	},
+	.release = drxk_t_release,
+	.init = drxk_t_init,
+	.sleep = drxk_t_sleep,
+	.i2c_gate_ctrl = drxk_gate_ctrl,
+
+	.set_frontend = drxk_set_parameters,
+	.get_frontend = drxk_t_get_frontend,
+
+	.read_status = drxk_read_status,
+	.read_ber = drxk_read_ber,
+	.read_signal_strength = drxk_read_signal_strength,
+	.read_snr = drxk_read_snr,
+	.read_ucblocks = drxk_read_ucblocks,
+};
+
+struct dvb_frontend *drxk_attach(struct i2c_adapter *i2c, u8 adr,
+				 struct dvb_frontend **fe_t)
+{
+	struct drxk_state *state = NULL;
+
+	state=kzalloc(sizeof(struct drxk_state), GFP_KERNEL);
+	if (!state)
+		return NULL;
+
+	state->i2c=i2c;
+	state->demod_address=adr;
+
+	mutex_init(&state->mutex);
+	mutex_init(&state->ctlock);
+
+	memcpy(&state->c_frontend.ops, &drxk_c_ops, sizeof(struct dvb_frontend_ops));
+	memcpy(&state->t_frontend.ops, &drxk_t_ops, sizeof(struct dvb_frontend_ops));
+	state->c_frontend.demodulator_priv=state;
+	state->t_frontend.demodulator_priv=state;
+
+	init_state(state);
+	if (init_drxk(state)<0)
+		goto error;
+	*fe_t = &state->t_frontend;
+	return &state->c_frontend;
+
+error:
+	printk("drxk: not found\n");
+	kfree(state);
+	return NULL;
+}
+
+MODULE_DESCRIPTION("DRX-K driver");
+MODULE_AUTHOR("Ralph Metzler");
+MODULE_LICENSE("GPL");
+
+EXPORT_SYMBOL(drxk_attach);