Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched_stat: Update sched_info_queue/dequeue() code comments
sched, cgroup: Fixup broken cgroup movement
diff --git a/include/linux/sched.h b/include/linux/sched.h
index be7adb7..f53cdf2 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1080,7 +1080,7 @@
struct task_struct *task);
#ifdef CONFIG_FAIR_GROUP_SCHED
- void (*moved_group) (struct task_struct *p, int on_rq);
+ void (*task_move_group) (struct task_struct *p, int on_rq);
#endif
};
diff --git a/kernel/sched.c b/kernel/sched.c
index d42992b..aa14a56 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -8510,12 +8510,12 @@
if (unlikely(running))
tsk->sched_class->put_prev_task(rq, tsk);
- set_task_rq(tsk, task_cpu(tsk));
-
#ifdef CONFIG_FAIR_GROUP_SCHED
- if (tsk->sched_class->moved_group)
- tsk->sched_class->moved_group(tsk, on_rq);
+ if (tsk->sched_class->task_move_group)
+ tsk->sched_class->task_move_group(tsk, on_rq);
+ else
#endif
+ set_task_rq(tsk, task_cpu(tsk));
if (unlikely(running))
tsk->sched_class->set_curr_task(rq);
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 933f3d1..f4f6a83 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -3869,13 +3869,26 @@
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-static void moved_group_fair(struct task_struct *p, int on_rq)
+static void task_move_group_fair(struct task_struct *p, int on_rq)
{
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
-
- update_curr(cfs_rq);
+ /*
+ * If the task was not on the rq at the time of this cgroup movement
+ * it must have been asleep, sleeping tasks keep their ->vruntime
+ * absolute on their old rq until wakeup (needed for the fair sleeper
+ * bonus in place_entity()).
+ *
+ * If it was on the rq, we've just 'preempted' it, which does convert
+ * ->vruntime to a relative base.
+ *
+ * Make sure both cases convert their relative position when migrating
+ * to another cgroup's rq. This does somewhat interfere with the
+ * fair sleeper stuff for the first placement, but who cares.
+ */
if (!on_rq)
- place_entity(cfs_rq, &p->se, 1);
+ p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
+ set_task_rq(p, task_cpu(p));
+ if (!on_rq)
+ p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
}
#endif
@@ -3927,7 +3940,7 @@
.get_rr_interval = get_rr_interval_fair,
#ifdef CONFIG_FAIR_GROUP_SCHED
- .moved_group = moved_group_fair,
+ .task_move_group = task_move_group_fair,
#endif
};
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h
index 25c2f96..48ddf43 100644
--- a/kernel/sched_stats.h
+++ b/kernel/sched_stats.h
@@ -157,15 +157,7 @@
}
/*
- * Called when a process is dequeued from the active array and given
- * the cpu. We should note that with the exception of interactive
- * tasks, the expired queue will become the active queue after the active
- * queue is empty, without explicitly dequeuing and requeuing tasks in the
- * expired queue. (Interactive tasks may be requeued directly to the
- * active queue, thus delaying tasks in the expired queue from running;
- * see scheduler_tick()).
- *
- * Though we are interested in knowing how long it was from the *first* time a
+ * We are interested in knowing how long it was from the *first* time a
* task was queued to the time that it finally hit a cpu, we call this routine
* from dequeue_task() to account for possible rq->clock skew across cpus. The
* delta taken on each cpu would annul the skew.
@@ -203,16 +195,6 @@
}
/*
- * Called when a process is queued into either the active or expired
- * array. The time is noted and later used to determine how long we
- * had to wait for us to reach the cpu. Since the expired queue will
- * become the active queue after active queue is empty, without dequeuing
- * and requeuing any tasks, we are interested in queuing to either. It
- * is unusual but not impossible for tasks to be dequeued and immediately
- * requeued in the same or another array: this can happen in sched_yield(),
- * set_user_nice(), and even load_balance() as it moves tasks from runqueue
- * to runqueue.
- *
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeued() will clear that stamp when appropriate.