Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/fs/udf/balloc.c b/fs/udf/balloc.c
new file mode 100644
index 0000000..b9ded26
--- /dev/null
+++ b/fs/udf/balloc.c
@@ -0,0 +1,959 @@
+/*
+ * balloc.c
+ *
+ * PURPOSE
+ *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
+ *
+ * CONTACTS
+ *	E-mail regarding any portion of the Linux UDF file system should be
+ *	directed to the development team mailing list (run by majordomo):
+ *		linux_udf@hpesjro.fc.hp.com
+ *
+ * COPYRIGHT
+ *	This file is distributed under the terms of the GNU General Public
+ *	License (GPL). Copies of the GPL can be obtained from:
+ *		ftp://prep.ai.mit.edu/pub/gnu/GPL
+ *	Each contributing author retains all rights to their own work.
+ *
+ *  (C) 1999-2001 Ben Fennema
+ *  (C) 1999 Stelias Computing Inc
+ *
+ * HISTORY
+ *
+ *  02/24/99 blf  Created.
+ *
+ */
+
+#include "udfdecl.h"
+
+#include <linux/quotaops.h>
+#include <linux/buffer_head.h>
+#include <linux/bitops.h>
+
+#include "udf_i.h"
+#include "udf_sb.h"
+
+#define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
+#define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
+#define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
+#define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
+#define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
+
+#define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
+#define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
+#define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
+#define uintBPL_t uint(BITS_PER_LONG)
+#define uint(x) xuint(x)
+#define xuint(x) __le ## x
+
+extern inline int find_next_one_bit (void * addr, int size, int offset)
+{
+	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
+	int result = offset & ~(BITS_PER_LONG-1);
+	unsigned long tmp;
+
+	if (offset >= size)
+		return size;
+	size -= result;
+	offset &= (BITS_PER_LONG-1);
+	if (offset)
+	{
+		tmp = leBPL_to_cpup(p++);
+		tmp &= ~0UL << offset;
+		if (size < BITS_PER_LONG)
+			goto found_first;
+		if (tmp)
+			goto found_middle;
+		size -= BITS_PER_LONG;
+		result += BITS_PER_LONG;
+	}
+	while (size & ~(BITS_PER_LONG-1))
+	{
+		if ((tmp = leBPL_to_cpup(p++)))
+			goto found_middle;
+		result += BITS_PER_LONG;
+		size -= BITS_PER_LONG;
+	}
+	if (!size)
+		return result;
+	tmp = leBPL_to_cpup(p);
+found_first:
+	tmp &= ~0UL >> (BITS_PER_LONG-size);
+found_middle:
+	return result + ffz(~tmp);
+}
+
+#define find_first_one_bit(addr, size)\
+	find_next_one_bit((addr), (size), 0)
+
+static int read_block_bitmap(struct super_block * sb,
+	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
+{
+	struct buffer_head *bh = NULL;
+	int retval = 0;
+	kernel_lb_addr loc;
+
+	loc.logicalBlockNum = bitmap->s_extPosition;
+	loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
+
+	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
+	if (!bh)
+	{
+		retval = -EIO;
+	}
+	bitmap->s_block_bitmap[bitmap_nr] = bh;
+	return retval;
+}
+
+static int __load_block_bitmap(struct super_block * sb,
+	struct udf_bitmap *bitmap, unsigned int block_group)
+{
+	int retval = 0;
+	int nr_groups = bitmap->s_nr_groups;
+
+	if (block_group >= nr_groups)
+	{
+		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
+	}
+
+	if (bitmap->s_block_bitmap[block_group])
+		return block_group;
+	else
+	{
+		retval = read_block_bitmap(sb, bitmap, block_group, block_group);
+		if (retval < 0)
+			return retval;
+		return block_group;
+	}
+}
+
+static inline int load_block_bitmap(struct super_block * sb,
+	struct udf_bitmap *bitmap, unsigned int block_group)
+{
+	int slot;
+
+	slot = __load_block_bitmap(sb, bitmap, block_group);
+
+	if (slot < 0)
+		return slot;
+
+	if (!bitmap->s_block_bitmap[slot])
+		return -EIO;
+
+	return slot;
+}
+
+static void udf_bitmap_free_blocks(struct super_block * sb,
+	struct inode * inode,
+	struct udf_bitmap *bitmap,
+	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	struct buffer_head * bh = NULL;
+	unsigned long block;
+	unsigned long block_group;
+	unsigned long bit;
+	unsigned long i;
+	int bitmap_nr;
+	unsigned long overflow;
+
+	down(&sbi->s_alloc_sem);
+	if (bloc.logicalBlockNum < 0 ||
+		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
+	{
+		udf_debug("%d < %d || %d + %d > %d\n",
+			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
+			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
+		goto error_return;
+	}
+
+	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
+
+do_more:
+	overflow = 0;
+	block_group = block >> (sb->s_blocksize_bits + 3);
+	bit = block % (sb->s_blocksize << 3);
+
+	/*
+	 * Check to see if we are freeing blocks across a group boundary.
+	 */
+	if (bit + count > (sb->s_blocksize << 3))
+	{
+		overflow = bit + count - (sb->s_blocksize << 3);
+		count -= overflow;
+	}
+	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+	if (bitmap_nr < 0)
+		goto error_return;
+
+	bh = bitmap->s_block_bitmap[bitmap_nr];
+	for (i=0; i < count; i++)
+	{
+		if (udf_set_bit(bit + i, bh->b_data))
+		{
+			udf_debug("bit %ld already set\n", bit + i);
+			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
+		}
+		else
+		{
+			if (inode)
+				DQUOT_FREE_BLOCK(inode, 1);
+			if (UDF_SB_LVIDBH(sb))
+			{
+				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
+					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
+			}
+		}
+	}
+	mark_buffer_dirty(bh);
+	if (overflow)
+	{
+		block += count;
+		count = overflow;
+		goto do_more;
+	}
+error_return:
+	sb->s_dirt = 1;
+	if (UDF_SB_LVIDBH(sb))
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+	up(&sbi->s_alloc_sem);
+	return;
+}
+
+static int udf_bitmap_prealloc_blocks(struct super_block * sb,
+	struct inode * inode,
+	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
+	uint32_t block_count)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	int alloc_count = 0;
+	int bit, block, block_group, group_start;
+	int nr_groups, bitmap_nr;
+	struct buffer_head *bh;
+
+	down(&sbi->s_alloc_sem);
+	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
+		goto out;
+
+	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
+		block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
+
+repeat:
+	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
+		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
+	block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
+	block_group = block >> (sb->s_blocksize_bits + 3);
+	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+	if (bitmap_nr < 0)
+		goto out;
+	bh = bitmap->s_block_bitmap[bitmap_nr];
+
+	bit = block % (sb->s_blocksize << 3);
+
+	while (bit < (sb->s_blocksize << 3) && block_count > 0)
+	{
+		if (!udf_test_bit(bit, bh->b_data))
+			goto out;
+		else if (DQUOT_PREALLOC_BLOCK(inode, 1))
+			goto out;
+		else if (!udf_clear_bit(bit, bh->b_data))
+		{
+			udf_debug("bit already cleared for block %d\n", bit);
+			DQUOT_FREE_BLOCK(inode, 1);
+			goto out;
+		}
+		block_count --;
+		alloc_count ++;
+		bit ++;
+		block ++;
+	}
+	mark_buffer_dirty(bh);
+	if (block_count > 0)
+		goto repeat;
+out:
+	if (UDF_SB_LVIDBH(sb))
+	{
+		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+	}
+	sb->s_dirt = 1;
+	up(&sbi->s_alloc_sem);
+	return alloc_count;
+}
+
+static int udf_bitmap_new_block(struct super_block * sb,
+	struct inode * inode,
+	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	int newbit, bit=0, block, block_group, group_start;
+	int end_goal, nr_groups, bitmap_nr, i;
+	struct buffer_head *bh = NULL;
+	char *ptr;
+	int newblock = 0;
+
+	*err = -ENOSPC;
+	down(&sbi->s_alloc_sem);
+
+repeat:
+	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
+		goal = 0;
+
+	nr_groups = bitmap->s_nr_groups;
+	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
+	block_group = block >> (sb->s_blocksize_bits + 3);
+	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+	if (bitmap_nr < 0)
+		goto error_return;
+	bh = bitmap->s_block_bitmap[bitmap_nr];
+	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
+
+	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
+	{
+		bit = block % (sb->s_blocksize << 3);
+
+		if (udf_test_bit(bit, bh->b_data))
+		{
+			goto got_block;
+		}
+		end_goal = (bit + 63) & ~63;
+		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
+		if (bit < end_goal)
+			goto got_block;
+		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
+		newbit = (ptr - ((char *)bh->b_data)) << 3;
+		if (newbit < sb->s_blocksize << 3)
+		{
+			bit = newbit;
+			goto search_back;
+		}
+		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
+		if (newbit < sb->s_blocksize << 3)
+		{
+			bit = newbit;
+			goto got_block;
+		}
+	}
+
+	for (i=0; i<(nr_groups*2); i++)
+	{
+		block_group ++;
+		if (block_group >= nr_groups)
+			block_group = 0;
+		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+		if (bitmap_nr < 0)
+			goto error_return;
+		bh = bitmap->s_block_bitmap[bitmap_nr];
+		if (i < nr_groups)
+		{
+			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
+			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
+			{
+				bit = (ptr - ((char *)bh->b_data)) << 3;
+				break;
+			}
+		}
+		else
+		{
+			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
+			if (bit < sb->s_blocksize << 3)
+				break;
+		}
+	}
+	if (i >= (nr_groups*2))
+	{
+		up(&sbi->s_alloc_sem);
+		return newblock;
+	}
+	if (bit < sb->s_blocksize << 3)
+		goto search_back;
+	else
+		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
+	if (bit >= sb->s_blocksize << 3)
+	{
+		up(&sbi->s_alloc_sem);
+		return 0;
+	}
+
+search_back:
+	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
+
+got_block:
+
+	/*
+	 * Check quota for allocation of this block.
+	 */
+	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
+	{
+		up(&sbi->s_alloc_sem);
+		*err = -EDQUOT;
+		return 0;
+	}
+
+	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
+		(sizeof(struct spaceBitmapDesc) << 3);
+
+	if (!udf_clear_bit(bit, bh->b_data))
+	{
+		udf_debug("bit already cleared for block %d\n", bit);
+		goto repeat;
+	}
+
+	mark_buffer_dirty(bh);
+
+	if (UDF_SB_LVIDBH(sb))
+	{
+		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+	}
+	sb->s_dirt = 1;
+	up(&sbi->s_alloc_sem);
+	*err = 0;
+	return newblock;
+
+error_return:
+	*err = -EIO;
+	up(&sbi->s_alloc_sem);
+	return 0;
+}
+
+static void udf_table_free_blocks(struct super_block * sb,
+	struct inode * inode,
+	struct inode * table,
+	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	uint32_t start, end;
+	uint32_t nextoffset, oextoffset, elen;
+	kernel_lb_addr nbloc, obloc, eloc;
+	struct buffer_head *obh, *nbh;
+	int8_t etype;
+	int i;
+
+	down(&sbi->s_alloc_sem);
+	if (bloc.logicalBlockNum < 0 ||
+		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
+	{
+		udf_debug("%d < %d || %d + %d > %d\n",
+			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
+			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
+		goto error_return;
+	}
+
+	/* We do this up front - There are some error conditions that could occure,
+	   but.. oh well */
+	if (inode)
+		DQUOT_FREE_BLOCK(inode, count);
+	if (UDF_SB_LVIDBH(sb))
+	{
+		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
+			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+	}
+
+	start = bloc.logicalBlockNum + offset;
+	end = bloc.logicalBlockNum + offset + count - 1;
+
+	oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
+	elen = 0;
+	obloc = nbloc = UDF_I_LOCATION(table);
+
+	obh = nbh = NULL;
+
+	while (count && (etype =
+		udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
+	{
+		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
+			start))
+		{
+			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
+			{
+				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
+			}
+			else
+			{
+				elen = (etype << 30) |
+					(elen + (count << sb->s_blocksize_bits));
+				start += count;
+				count = 0;
+			}
+			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
+		}
+		else if (eloc.logicalBlockNum == (end + 1))
+		{
+			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
+			{
+				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+				eloc.logicalBlockNum -=
+					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
+			}
+			else
+			{
+				eloc.logicalBlockNum = start;
+				elen = (etype << 30) |
+					(elen + (count << sb->s_blocksize_bits));
+				end -= count;
+				count = 0;
+			}
+			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
+		}
+
+		if (nbh != obh)
+		{
+			i = -1;
+			obloc = nbloc;
+			udf_release_data(obh);
+			atomic_inc(&nbh->b_count);
+			obh = nbh;
+			oextoffset = 0;
+		}
+		else
+			oextoffset = nextoffset;
+	}
+
+	if (count)
+	{
+		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
+				 a new block, and since we hold the super block lock already
+				 very bad things would happen :)
+
+				 We copy the behavior of udf_add_aext, but instead of
+				 trying to allocate a new block close to the existing one,
+				 we just steal a block from the extent we are trying to add.
+
+				 It would be nice if the blocks were close together, but it
+				 isn't required.
+		*/
+
+		int adsize;
+		short_ad *sad = NULL;
+		long_ad *lad = NULL;
+		struct allocExtDesc *aed;
+
+		eloc.logicalBlockNum = start;
+		elen = EXT_RECORDED_ALLOCATED |
+			(count << sb->s_blocksize_bits);
+
+		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+			adsize = sizeof(short_ad);
+		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+			adsize = sizeof(long_ad);
+		else
+		{
+			udf_release_data(obh);
+			udf_release_data(nbh);
+			goto error_return;
+		}
+
+		if (nextoffset + (2 * adsize) > sb->s_blocksize)
+		{
+			char *sptr, *dptr;
+			int loffset;
+	
+			udf_release_data(obh);
+			obh = nbh;
+			obloc = nbloc;
+			oextoffset = nextoffset;
+
+			/* Steal a block from the extent being free'd */
+			nbloc.logicalBlockNum = eloc.logicalBlockNum;
+			eloc.logicalBlockNum ++;
+			elen -= sb->s_blocksize;
+
+			if (!(nbh = udf_tread(sb,
+				udf_get_lb_pblock(sb, nbloc, 0))))
+			{
+				udf_release_data(obh);
+				goto error_return;
+			}
+			aed = (struct allocExtDesc *)(nbh->b_data);
+			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
+			if (nextoffset + adsize > sb->s_blocksize)
+			{
+				loffset = nextoffset;
+				aed->lengthAllocDescs = cpu_to_le32(adsize);
+				if (obh)
+					sptr = UDF_I_DATA(inode) + nextoffset -  udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize;
+				else
+					sptr = obh->b_data + nextoffset - adsize;
+				dptr = nbh->b_data + sizeof(struct allocExtDesc);
+				memcpy(dptr, sptr, adsize);
+				nextoffset = sizeof(struct allocExtDesc) + adsize;
+			}
+			else
+			{
+				loffset = nextoffset + adsize;
+				aed->lengthAllocDescs = cpu_to_le32(0);
+				sptr = (obh)->b_data + nextoffset;
+				nextoffset = sizeof(struct allocExtDesc);
+
+				if (obh)
+				{
+					aed = (struct allocExtDesc *)(obh)->b_data;
+					aed->lengthAllocDescs =
+						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
+				}
+				else
+				{
+					UDF_I_LENALLOC(table) += adsize;
+					mark_inode_dirty(table);
+				}
+			}
+			if (UDF_SB_UDFREV(sb) >= 0x0200)
+				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
+					nbloc.logicalBlockNum, sizeof(tag));
+			else
+				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
+					nbloc.logicalBlockNum, sizeof(tag));
+			switch (UDF_I_ALLOCTYPE(table))
+			{
+				case ICBTAG_FLAG_AD_SHORT:
+				{
+					sad = (short_ad *)sptr;
+					sad->extLength = cpu_to_le32(
+						EXT_NEXT_EXTENT_ALLOCDECS |
+						sb->s_blocksize);
+					sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
+					break;
+				}
+				case ICBTAG_FLAG_AD_LONG:
+				{
+					lad = (long_ad *)sptr;
+					lad->extLength = cpu_to_le32(
+						EXT_NEXT_EXTENT_ALLOCDECS |
+						sb->s_blocksize);
+					lad->extLocation = cpu_to_lelb(nbloc);
+					break;
+				}
+			}
+			if (obh)
+			{
+				udf_update_tag(obh->b_data, loffset);
+				mark_buffer_dirty(obh);
+			}
+			else
+				mark_inode_dirty(table);
+		}
+
+		if (elen) /* It's possible that stealing the block emptied the extent */
+		{
+			udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
+
+			if (!nbh)
+			{
+				UDF_I_LENALLOC(table) += adsize;
+				mark_inode_dirty(table);
+			}
+			else
+			{
+				aed = (struct allocExtDesc *)nbh->b_data;
+				aed->lengthAllocDescs =
+					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
+				udf_update_tag(nbh->b_data, nextoffset);
+				mark_buffer_dirty(nbh);
+			}
+		}
+	}
+
+	udf_release_data(nbh);
+	udf_release_data(obh);
+
+error_return:
+	sb->s_dirt = 1;
+	up(&sbi->s_alloc_sem);
+	return;
+}
+
+static int udf_table_prealloc_blocks(struct super_block * sb,
+	struct inode * inode,
+	struct inode *table, uint16_t partition, uint32_t first_block,
+	uint32_t block_count)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	int alloc_count = 0;
+	uint32_t extoffset, elen, adsize;
+	kernel_lb_addr bloc, eloc;
+	struct buffer_head *bh;
+	int8_t etype = -1;
+
+	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
+		return 0;
+
+	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+		adsize = sizeof(short_ad);
+	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+		adsize = sizeof(long_ad);
+	else
+		return 0;
+
+	down(&sbi->s_alloc_sem);
+	extoffset = sizeof(struct unallocSpaceEntry);
+	bloc = UDF_I_LOCATION(table);
+
+	bh = NULL;
+	eloc.logicalBlockNum = 0xFFFFFFFF;
+
+	while (first_block != eloc.logicalBlockNum && (etype =
+		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
+	{
+		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
+			eloc.logicalBlockNum, elen, first_block);
+		; /* empty loop body */
+	}
+
+	if (first_block == eloc.logicalBlockNum)
+	{
+		extoffset -= adsize;
+
+		alloc_count = (elen >> sb->s_blocksize_bits);
+		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
+			alloc_count = 0;
+		else if (alloc_count > block_count)
+		{
+			alloc_count = block_count;
+			eloc.logicalBlockNum += alloc_count;
+			elen -= (alloc_count << sb->s_blocksize_bits);
+			udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
+		}
+		else
+			udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
+	}
+	else
+		alloc_count = 0;
+
+	udf_release_data(bh);
+
+	if (alloc_count && UDF_SB_LVIDBH(sb))
+	{
+		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+		sb->s_dirt = 1;
+	}
+	up(&sbi->s_alloc_sem);
+	return alloc_count;
+}
+
+static int udf_table_new_block(struct super_block * sb,
+	struct inode * inode,
+	struct inode *table, uint16_t partition, uint32_t goal, int *err)
+{
+	struct udf_sb_info *sbi = UDF_SB(sb);
+	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
+	uint32_t newblock = 0, adsize;
+	uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
+	kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
+	struct buffer_head *bh, *goal_bh;
+	int8_t etype;
+
+	*err = -ENOSPC;
+
+	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+		adsize = sizeof(short_ad);
+	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+		adsize = sizeof(long_ad);
+	else
+		return newblock;
+
+	down(&sbi->s_alloc_sem);
+	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
+		goal = 0;
+
+	/* We search for the closest matching block to goal. If we find a exact hit,
+	   we stop. Otherwise we keep going till we run out of extents.
+	   We store the buffer_head, bloc, and extoffset of the current closest
+	   match and use that when we are done.
+	*/
+
+	extoffset = sizeof(struct unallocSpaceEntry);
+	bloc = UDF_I_LOCATION(table);
+
+	goal_bh = bh = NULL;
+
+	while (spread && (etype =
+		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
+	{
+		if (goal >= eloc.logicalBlockNum)
+		{
+			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
+				nspread = 0;
+			else
+				nspread = goal - eloc.logicalBlockNum -
+					(elen >> sb->s_blocksize_bits);
+		}
+		else
+			nspread = eloc.logicalBlockNum - goal;
+
+		if (nspread < spread)
+		{
+			spread = nspread;
+			if (goal_bh != bh)
+			{
+				udf_release_data(goal_bh);
+				goal_bh = bh;
+				atomic_inc(&goal_bh->b_count);
+			}
+			goal_bloc = bloc;
+			goal_extoffset = extoffset - adsize;
+			goal_eloc = eloc;
+			goal_elen = (etype << 30) | elen;
+		}
+	}
+
+	udf_release_data(bh);
+
+	if (spread == 0xFFFFFFFF)
+	{
+		udf_release_data(goal_bh);
+		up(&sbi->s_alloc_sem);
+		return 0;
+	}
+
+	/* Only allocate blocks from the beginning of the extent.
+	   That way, we only delete (empty) extents, never have to insert an
+	   extent because of splitting */
+	/* This works, but very poorly.... */
+
+	newblock = goal_eloc.logicalBlockNum;
+	goal_eloc.logicalBlockNum ++;
+	goal_elen -= sb->s_blocksize;
+
+	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
+	{
+		udf_release_data(goal_bh);
+		up(&sbi->s_alloc_sem);
+		*err = -EDQUOT;
+		return 0;
+	}
+
+	if (goal_elen)
+		udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
+	else
+		udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
+	udf_release_data(goal_bh);
+
+	if (UDF_SB_LVIDBH(sb))
+	{
+		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
+		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+	}
+
+	sb->s_dirt = 1;
+	up(&sbi->s_alloc_sem);
+	*err = 0;
+	return newblock;
+}
+
+inline void udf_free_blocks(struct super_block * sb,
+	struct inode * inode,
+	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+	uint16_t partition = bloc.partitionReferenceNum;
+
+	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+	{
+		return udf_bitmap_free_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+			bloc, offset, count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+	{
+		return udf_table_free_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+			bloc, offset, count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+	{
+		return udf_bitmap_free_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+			bloc, offset, count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+	{
+		return udf_table_free_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+			bloc, offset, count);
+	}
+	else
+		return;
+}
+
+inline int udf_prealloc_blocks(struct super_block * sb,
+	struct inode * inode,
+	uint16_t partition, uint32_t first_block, uint32_t block_count)
+{
+	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+	{
+		return udf_bitmap_prealloc_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+			partition, first_block, block_count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+	{
+		return udf_table_prealloc_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+			partition, first_block, block_count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+	{
+		return udf_bitmap_prealloc_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+			partition, first_block, block_count);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+	{
+		return udf_table_prealloc_blocks(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+			partition, first_block, block_count);
+	}
+	else
+		return 0;
+}
+
+inline int udf_new_block(struct super_block * sb,
+	struct inode * inode,
+	uint16_t partition, uint32_t goal, int *err)
+{
+	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+	{
+		return udf_bitmap_new_block(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+			partition, goal, err);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+	{
+		return udf_table_new_block(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+			partition, goal, err);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+	{
+		return udf_bitmap_new_block(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+			partition, goal, err);
+	}
+	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+	{
+		return udf_table_new_block(sb, inode,
+			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+			partition, goal, err);
+	}
+	else
+	{
+		*err = -EIO;
+		return 0;
+	}
+}