Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/net/fec.c b/drivers/net/fec.c
new file mode 100644
index 0000000..2c70084
--- /dev/null
+++ b/drivers/net/fec.c
@@ -0,0 +1,2259 @@
+/*
+ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is specific to the FADS implementation,
+ * since the board contains control registers external to the processor
+ * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
+ * describes connections using the internal parallel port I/O, which
+ * is basically all of Port D.
+ *
+ * Right now, I am very watseful with the buffers.  I allocate memory
+ * pages and then divide them into 2K frame buffers.  This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ * Much better multiple PHY support by Magnus Damm.
+ * Copyright (c) 2000 Ericsson Radio Systems AB.
+ *
+ * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
+ * Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+#include <linux/workqueue.h>
+#include <linux/bitops.h>
+
+#include <asm/irq.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/pgtable.h>
+
+#if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x)
+#include <asm/coldfire.h>
+#include <asm/mcfsim.h>
+#include "fec.h"
+#else
+#include <asm/8xx_immap.h>
+#include <asm/mpc8xx.h>
+#include "commproc.h"
+#endif
+
+#if defined(CONFIG_FEC2)
+#define	FEC_MAX_PORTS	2
+#else
+#define	FEC_MAX_PORTS	1
+#endif
+
+/*
+ * Define the fixed address of the FEC hardware.
+ */
+static unsigned int fec_hw[] = {
+#if defined(CONFIG_M5272)
+	(MCF_MBAR + 0x840),
+#elif defined(CONFIG_M527x)
+	(MCF_MBAR + 0x1000),
+	(MCF_MBAR + 0x1800),
+#elif defined(CONFIG_M528x)
+	(MCF_MBAR + 0x1000),
+#else
+	&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
+#endif
+};
+
+static unsigned char	fec_mac_default[] = {
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+};
+
+/*
+ * Some hardware gets it MAC address out of local flash memory.
+ * if this is non-zero then assume it is the address to get MAC from.
+ */
+#if defined(CONFIG_NETtel)
+#define	FEC_FLASHMAC	0xf0006006
+#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
+#define	FEC_FLASHMAC	0xf0006000
+#elif defined (CONFIG_MTD_KeyTechnology)
+#define	FEC_FLASHMAC	0xffe04000
+#elif defined(CONFIG_CANCam)
+#define	FEC_FLASHMAC	0xf0020000
+#else
+#define	FEC_FLASHMAC	0
+#endif
+
+unsigned char *fec_flashmac = (unsigned char *) FEC_FLASHMAC;
+
+/* Forward declarations of some structures to support different PHYs
+*/
+
+typedef struct {
+	uint mii_data;
+	void (*funct)(uint mii_reg, struct net_device *dev);
+} phy_cmd_t;
+
+typedef struct {
+	uint id;
+	char *name;
+
+	const phy_cmd_t *config;
+	const phy_cmd_t *startup;
+	const phy_cmd_t *ack_int;
+	const phy_cmd_t *shutdown;
+} phy_info_t;
+
+/* The number of Tx and Rx buffers.  These are allocated from the page
+ * pool.  The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter.  We just use
+ * the skbuffer directly.
+ */
+#define FEC_ENET_RX_PAGES	8
+#define FEC_ENET_RX_FRSIZE	2048
+#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define FEC_ENET_TX_FRSIZE	2048
+#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
+#define TX_RING_SIZE		16	/* Must be power of two */
+#define TX_RING_MOD_MASK	15	/*   for this to work */
+
+/* Interrupt events/masks.
+*/
+#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
+#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
+#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
+#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
+#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
+#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
+#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
+#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
+#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
+#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE		1518
+#define PKT_MINBUF_SIZE		64
+#define PKT_MAXBLR_SIZE		1520
+
+
+/*
+ * The 5270/5271/5280/5282 RX control register also contains maximum frame
+ * size bits. Other FEC hardware does not, so we need to take that into
+ * account when setting it.
+ */
+#if defined(CONFIG_M527x) || defined(CONFIG_M528x)
+#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
+#else
+#define	OPT_FRAME_SIZE	0
+#endif
+
+/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors.  The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller.  The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions.  The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+	/* Hardware registers of the FEC device */
+	volatile fec_t	*hwp;
+
+	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
+	unsigned char *tx_bounce[TX_RING_SIZE];
+	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
+	ushort	skb_cur;
+	ushort	skb_dirty;
+
+	/* CPM dual port RAM relative addresses.
+	*/
+	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
+	cbd_t	*tx_bd_base;
+	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
+	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
+	struct	net_device_stats stats;
+	uint	tx_full;
+	spinlock_t lock;
+
+	uint	phy_id;
+	uint	phy_id_done;
+	uint	phy_status;
+	uint	phy_speed;
+	phy_info_t	*phy;
+	struct work_struct phy_task;
+
+	uint	sequence_done;
+	uint	mii_phy_task_queued;
+
+	uint	phy_addr;
+
+	int	index;
+	int	opened;
+	int	link;
+	int	old_link;
+	int	full_duplex;
+	unsigned char mac_addr[ETH_ALEN];
+};
+
+static int fec_enet_open(struct net_device *dev);
+static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
+static void fec_enet_mii(struct net_device *dev);
+static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static void fec_enet_tx(struct net_device *dev);
+static void fec_enet_rx(struct net_device *dev);
+static int fec_enet_close(struct net_device *dev);
+static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
+static void set_multicast_list(struct net_device *dev);
+static void fec_restart(struct net_device *dev, int duplex);
+static void fec_stop(struct net_device *dev);
+static void fec_set_mac_address(struct net_device *dev);
+
+
+/* MII processing.  We keep this as simple as possible.  Requests are
+ * placed on the list (if there is room).  When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+	uint	mii_regval;
+	void	(*mii_func)(uint val, struct net_device *dev);
+	struct	mii_list *mii_next;
+} mii_list_t;
+
+#define		NMII	20
+mii_list_t	mii_cmds[NMII];
+mii_list_t	*mii_free;
+mii_list_t	*mii_head;
+mii_list_t	*mii_tail;
+
+static int	mii_queue(struct net_device *dev, int request, 
+				void (*func)(uint, struct net_device *));
+
+/* Make MII read/write commands for the FEC.
+*/
+#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
+#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
+						(VAL & 0xffff))
+#define mk_mii_end	0
+
+/* Transmitter timeout.
+*/
+#define TX_TIMEOUT (2*HZ)
+
+/* Register definitions for the PHY.
+*/
+
+#define MII_REG_CR          0  /* Control Register                         */
+#define MII_REG_SR          1  /* Status Register                          */
+#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
+#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
+#define MII_REG_ANAR        4  /* A-N Advertisement Register               */ 
+#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
+#define MII_REG_ANER        6  /* A-N Expansion Register                   */
+#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
+#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
+
+/* values for phy_status */
+
+#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
+#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
+#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
+#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
+#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */ 
+#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
+#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */ 
+
+#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
+#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
+#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
+#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
+#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
+#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/ 
+#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
+#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */ 
+
+
+static int
+fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	volatile fec_t	*fecp;
+	volatile cbd_t	*bdp;
+
+	fep = netdev_priv(dev);
+	fecp = (volatile fec_t*)dev->base_addr;
+
+	if (!fep->link) {
+		/* Link is down or autonegotiation is in progress. */
+		return 1;
+	}
+
+	/* Fill in a Tx ring entry */
+	bdp = fep->cur_tx;
+
+#ifndef final_version
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		/* Ooops.  All transmit buffers are full.  Bail out.
+		 * This should not happen, since dev->tbusy should be set.
+		 */
+		printk("%s: tx queue full!.\n", dev->name);
+		return 1;
+	}
+#endif
+
+	/* Clear all of the status flags.
+	 */
+	bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+	/* Set buffer length and buffer pointer.
+	*/
+	bdp->cbd_bufaddr = __pa(skb->data);
+	bdp->cbd_datlen = skb->len;
+
+	/*
+	 *	On some FEC implementations data must be aligned on
+	 *	4-byte boundaries. Use bounce buffers to copy data
+	 *	and get it aligned. Ugh.
+	 */
+	if (bdp->cbd_bufaddr & 0x3) {
+		unsigned int index;
+		index = bdp - fep->tx_bd_base;
+		memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
+		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
+	}
+
+	/* Save skb pointer.
+	*/
+	fep->tx_skbuff[fep->skb_cur] = skb;
+
+	fep->stats.tx_bytes += skb->len;
+	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+	
+	/* Push the data cache so the CPM does not get stale memory
+	 * data.
+	 */
+	flush_dcache_range((unsigned long)skb->data,
+			   (unsigned long)skb->data + skb->len);
+
+	spin_lock_irq(&fep->lock);
+
+	/* Send it on its way.  Tell FEC its ready, interrupt when done,
+	 * its the last BD of the frame, and to put the CRC on the end.
+	 */
+
+	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
+			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+	dev->trans_start = jiffies;
+
+	/* Trigger transmission start */
+	fecp->fec_x_des_active = 0x01000000;
+
+	/* If this was the last BD in the ring, start at the beginning again.
+	*/
+	if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
+		bdp = fep->tx_bd_base;
+	} else {
+		bdp++;
+	}
+
+	if (bdp == fep->dirty_tx) {
+		fep->tx_full = 1;
+		netif_stop_queue(dev);
+	}
+
+	fep->cur_tx = (cbd_t *)bdp;
+
+	spin_unlock_irq(&fep->lock);
+
+	return 0;
+}
+
+static void
+fec_timeout(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	printk("%s: transmit timed out.\n", dev->name);
+	fep->stats.tx_errors++;
+#ifndef final_version
+	{
+	int	i;
+	cbd_t	*bdp;
+
+	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
+	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
+	       (unsigned long)fep->dirty_tx,
+	       (unsigned long)fep->cur_rx);
+
+	bdp = fep->tx_bd_base;
+	printk(" tx: %u buffers\n",  TX_RING_SIZE);
+	for (i = 0 ; i < TX_RING_SIZE; i++) {
+		printk("  %08x: %04x %04x %08x\n", 
+		       (uint) bdp,
+		       bdp->cbd_sc,
+		       bdp->cbd_datlen,
+		       (int) bdp->cbd_bufaddr);
+		bdp++;
+	}
+
+	bdp = fep->rx_bd_base;
+	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
+	for (i = 0 ; i < RX_RING_SIZE; i++) {
+		printk("  %08x: %04x %04x %08x\n",
+		       (uint) bdp,
+		       bdp->cbd_sc,
+		       bdp->cbd_datlen,
+		       (int) bdp->cbd_bufaddr);
+		bdp++;
+	}
+	}
+#endif
+	fec_restart(dev, 0);
+	netif_wake_queue(dev);
+}
+
+/* The interrupt handler.
+ * This is called from the MPC core interrupt.
+ */
+static irqreturn_t
+fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	net_device *dev = dev_id;
+	volatile fec_t	*fecp;
+	uint	int_events;
+	int handled = 0;
+
+	fecp = (volatile fec_t*)dev->base_addr;
+
+	/* Get the interrupt events that caused us to be here.
+	*/
+	while ((int_events = fecp->fec_ievent) != 0) {
+		fecp->fec_ievent = int_events;
+
+		/* Handle receive event in its own function.
+		 */
+		if (int_events & FEC_ENET_RXF) {
+			handled = 1;
+			fec_enet_rx(dev);
+		}
+
+		/* Transmit OK, or non-fatal error. Update the buffer
+		   descriptors. FEC handles all errors, we just discover
+		   them as part of the transmit process.
+		*/
+		if (int_events & FEC_ENET_TXF) {
+			handled = 1;
+			fec_enet_tx(dev);
+		}
+
+		if (int_events & FEC_ENET_MII) {
+			handled = 1;
+			fec_enet_mii(dev);
+		}
+	
+	}
+	return IRQ_RETVAL(handled);
+}
+
+
+static void
+fec_enet_tx(struct net_device *dev)
+{
+	struct	fec_enet_private *fep;
+	volatile cbd_t	*bdp;
+	struct	sk_buff	*skb;
+
+	fep = netdev_priv(dev);
+	spin_lock(&fep->lock);
+	bdp = fep->dirty_tx;
+
+	while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
+		if (bdp == fep->cur_tx && fep->tx_full == 0) break;
+
+		skb = fep->tx_skbuff[fep->skb_dirty];
+		/* Check for errors. */
+		if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
+				   BD_ENET_TX_RL | BD_ENET_TX_UN |
+				   BD_ENET_TX_CSL)) {
+			fep->stats.tx_errors++;
+			if (bdp->cbd_sc & BD_ENET_TX_HB)  /* No heartbeat */
+				fep->stats.tx_heartbeat_errors++;
+			if (bdp->cbd_sc & BD_ENET_TX_LC)  /* Late collision */
+				fep->stats.tx_window_errors++;
+			if (bdp->cbd_sc & BD_ENET_TX_RL)  /* Retrans limit */
+				fep->stats.tx_aborted_errors++;
+			if (bdp->cbd_sc & BD_ENET_TX_UN)  /* Underrun */
+				fep->stats.tx_fifo_errors++;
+			if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
+				fep->stats.tx_carrier_errors++;
+		} else {
+			fep->stats.tx_packets++;
+		}
+
+#ifndef final_version
+		if (bdp->cbd_sc & BD_ENET_TX_READY)
+			printk("HEY! Enet xmit interrupt and TX_READY.\n");
+#endif
+		/* Deferred means some collisions occurred during transmit,
+		 * but we eventually sent the packet OK.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_DEF)
+			fep->stats.collisions++;
+	    
+		/* Free the sk buffer associated with this last transmit.
+		 */
+		dev_kfree_skb_any(skb);
+		fep->tx_skbuff[fep->skb_dirty] = NULL;
+		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+	    
+		/* Update pointer to next buffer descriptor to be transmitted.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+			bdp = fep->tx_bd_base;
+		else
+			bdp++;
+	    
+		/* Since we have freed up a buffer, the ring is no longer
+		 * full.
+		 */
+		if (fep->tx_full) {
+			fep->tx_full = 0;
+			if (netif_queue_stopped(dev))
+				netif_wake_queue(dev);
+		}
+	}
+	fep->dirty_tx = (cbd_t *)bdp;
+	spin_unlock(&fep->lock);
+}
+
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static void
+fec_enet_rx(struct net_device *dev)
+{
+	struct	fec_enet_private *fep;
+	volatile fec_t	*fecp;
+	volatile cbd_t *bdp;
+	struct	sk_buff	*skb;
+	ushort	pkt_len;
+	__u8 *data;
+
+	fep = netdev_priv(dev);
+	fecp = (volatile fec_t*)dev->base_addr;
+
+	/* First, grab all of the stats for the incoming packet.
+	 * These get messed up if we get called due to a busy condition.
+	 */
+	bdp = fep->cur_rx;
+
+while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
+
+#ifndef final_version
+	/* Since we have allocated space to hold a complete frame,
+	 * the last indicator should be set.
+	 */
+	if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
+		printk("FEC ENET: rcv is not +last\n");
+#endif
+
+	if (!fep->opened)
+		goto rx_processing_done;
+
+	/* Check for errors. */
+	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
+			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
+		fep->stats.rx_errors++;       
+		if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
+		/* Frame too long or too short. */
+			fep->stats.rx_length_errors++;
+		}
+		if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
+			fep->stats.rx_frame_errors++;
+		if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
+			fep->stats.rx_crc_errors++;
+		if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
+			fep->stats.rx_crc_errors++;
+	}
+
+	/* Report late collisions as a frame error.
+	 * On this error, the BD is closed, but we don't know what we
+	 * have in the buffer.  So, just drop this frame on the floor.
+	 */
+	if (bdp->cbd_sc & BD_ENET_RX_CL) {
+		fep->stats.rx_errors++;
+		fep->stats.rx_frame_errors++;
+		goto rx_processing_done;
+	}
+
+	/* Process the incoming frame.
+	 */
+	fep->stats.rx_packets++;
+	pkt_len = bdp->cbd_datlen;
+	fep->stats.rx_bytes += pkt_len;
+	data = (__u8*)__va(bdp->cbd_bufaddr);
+
+	/* This does 16 byte alignment, exactly what we need.
+	 * The packet length includes FCS, but we don't want to
+	 * include that when passing upstream as it messes up
+	 * bridging applications.
+	 */
+	skb = dev_alloc_skb(pkt_len-4);
+
+	if (skb == NULL) {
+		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+		fep->stats.rx_dropped++;
+	} else {
+		skb->dev = dev;
+		skb_put(skb,pkt_len-4);	/* Make room */
+		eth_copy_and_sum(skb,
+				 (unsigned char *)__va(bdp->cbd_bufaddr),
+				 pkt_len-4, 0);
+		skb->protocol=eth_type_trans(skb,dev);
+		netif_rx(skb);
+	}
+  rx_processing_done:
+
+	/* Clear the status flags for this buffer.
+	*/
+	bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+	/* Mark the buffer empty.
+	*/
+	bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+	/* Update BD pointer to next entry.
+	*/
+	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+		bdp = fep->rx_bd_base;
+	else
+		bdp++;
+	
+#if 1
+	/* Doing this here will keep the FEC running while we process
+	 * incoming frames.  On a heavily loaded network, we should be
+	 * able to keep up at the expense of system resources.
+	 */
+	fecp->fec_r_des_active = 0x01000000;
+#endif
+   } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
+	fep->cur_rx = (cbd_t *)bdp;
+
+#if 0
+	/* Doing this here will allow us to process all frames in the
+	 * ring before the FEC is allowed to put more there.  On a heavily
+	 * loaded network, some frames may be lost.  Unfortunately, this
+	 * increases the interrupt overhead since we can potentially work
+	 * our way back to the interrupt return only to come right back
+	 * here.
+	 */
+	fecp->fec_r_des_active = 0x01000000;
+#endif
+}
+
+
+static void
+fec_enet_mii(struct net_device *dev)
+{
+	struct	fec_enet_private *fep;
+	volatile fec_t	*ep;
+	mii_list_t	*mip;
+	uint		mii_reg;
+
+	fep = netdev_priv(dev);
+	ep = fep->hwp;
+	mii_reg = ep->fec_mii_data;
+	
+	if ((mip = mii_head) == NULL) {
+		printk("MII and no head!\n");
+		return;
+	}
+
+	if (mip->mii_func != NULL)
+		(*(mip->mii_func))(mii_reg, dev);
+
+	mii_head = mip->mii_next;
+	mip->mii_next = mii_free;
+	mii_free = mip;
+
+	if ((mip = mii_head) != NULL)
+		ep->fec_mii_data = mip->mii_regval;
+}
+
+static int
+mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
+{
+	struct fec_enet_private *fep;
+	unsigned long	flags;
+	mii_list_t	*mip;
+	int		retval;
+
+	/* Add PHY address to register command.
+	*/
+	fep = netdev_priv(dev);
+	regval |= fep->phy_addr << 23;
+
+	retval = 0;
+
+	save_flags(flags);
+	cli();
+
+	if ((mip = mii_free) != NULL) {
+		mii_free = mip->mii_next;
+		mip->mii_regval = regval;
+		mip->mii_func = func;
+		mip->mii_next = NULL;
+		if (mii_head) {
+			mii_tail->mii_next = mip;
+			mii_tail = mip;
+		}
+		else {
+			mii_head = mii_tail = mip;
+			fep->hwp->fec_mii_data = regval;
+		}
+	}
+	else {
+		retval = 1;
+	}
+
+	restore_flags(flags);
+
+	return(retval);
+}
+
+static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
+{
+	int k;
+
+	if(!c)
+		return;
+
+	for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
+		mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
+	}
+}
+
+static void mii_parse_sr(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
+
+	if (mii_reg & 0x0004)
+		*s |= PHY_STAT_LINK;
+	if (mii_reg & 0x0010)
+		*s |= PHY_STAT_FAULT;
+	if (mii_reg & 0x0020)
+		*s |= PHY_STAT_ANC;
+}
+
+static void mii_parse_cr(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
+
+	if (mii_reg & 0x1000)
+		*s |= PHY_CONF_ANE;
+	if (mii_reg & 0x4000)
+		*s |= PHY_CONF_LOOP;
+}
+
+static void mii_parse_anar(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_CONF_SPMASK);
+
+	if (mii_reg & 0x0020)
+		*s |= PHY_CONF_10HDX;
+	if (mii_reg & 0x0040)
+		*s |= PHY_CONF_10FDX;
+	if (mii_reg & 0x0080)
+		*s |= PHY_CONF_100HDX;
+	if (mii_reg & 0x00100)
+		*s |= PHY_CONF_100FDX;
+}
+
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT970 is used by many boards				     */
+
+#define MII_LXT970_MIRROR    16  /* Mirror register           */
+#define MII_LXT970_IER       17  /* Interrupt Enable Register */
+#define MII_LXT970_ISR       18  /* Interrupt Status Register */
+#define MII_LXT970_CONFIG    19  /* Configuration Register    */
+#define MII_LXT970_CSR       20  /* Chip Status Register      */
+
+static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_STAT_SPMASK);
+
+	if (mii_reg & 0x0800) {
+		if (mii_reg & 0x1000)
+			*s |= PHY_STAT_100FDX;
+		else
+			*s |= PHY_STAT_100HDX;
+	} else {
+		if (mii_reg & 0x1000)
+			*s |= PHY_STAT_10FDX;
+		else
+			*s |= PHY_STAT_10HDX;
+	}
+}
+
+static phy_info_t phy_info_lxt970 = {
+	0x07810000, 
+	"LXT970",
+
+	(const phy_cmd_t []) {  /* config */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* read SR and ISR to acknowledge */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_LXT970_ISR), NULL },
+
+		/* find out the current status */
+		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+	
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT971 is used on some of my custom boards                  */
+
+/* register definitions for the 971 */
+
+#define MII_LXT971_PCR       16  /* Port Control Register     */
+#define MII_LXT971_SR2       17  /* Status Register 2         */
+#define MII_LXT971_IER       18  /* Interrupt Enable Register */
+#define MII_LXT971_ISR       19  /* Interrupt Status Register */
+#define MII_LXT971_LCR       20  /* LED Control Register      */
+#define MII_LXT971_TCR       30  /* Transmit Control Register */
+
+/* 
+ * I had some nice ideas of running the MDIO faster...
+ * The 971 should support 8MHz and I tried it, but things acted really
+ * weird, so 2.5 MHz ought to be enough for anyone...
+ */
+
+static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
+
+	if (mii_reg & 0x0400) {
+		fep->link = 1;
+		*s |= PHY_STAT_LINK;
+	} else {
+		fep->link = 0;
+	}
+	if (mii_reg & 0x0080)
+		*s |= PHY_STAT_ANC;
+	if (mii_reg & 0x4000) {
+		if (mii_reg & 0x0200)
+			*s |= PHY_STAT_100FDX;
+		else
+			*s |= PHY_STAT_100HDX;
+	} else {
+		if (mii_reg & 0x0200)
+			*s |= PHY_STAT_10FDX;
+		else
+			*s |= PHY_STAT_10HDX;
+	}
+	if (mii_reg & 0x0008)
+		*s |= PHY_STAT_FAULT;
+}
+
+static phy_info_t phy_info_lxt971 = {
+	0x0001378e, 
+	"LXT971",
+	
+	(const phy_cmd_t []) {  /* config */  
+		/* limit to 10MBit because my protorype board 
+		 * doesn't work with 100. */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
+		/* Somehow does the 971 tell me that the link is down
+		 * the first read after power-up.
+		 * read here to get a valid value in ack_int */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, 
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* find out the current status */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
+		/* we only need to read ISR to acknowledge */
+		{ mk_mii_read(MII_LXT971_ISR), NULL },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+/* ------------------------------------------------------------------------- */
+/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
+
+/* register definitions */
+
+#define MII_QS6612_MCR       17  /* Mode Control Register      */
+#define MII_QS6612_FTR       27  /* Factory Test Register      */
+#define MII_QS6612_MCO       28  /* Misc. Control Register     */
+#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
+#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
+#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
+
+static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_STAT_SPMASK);
+
+	switch((mii_reg >> 2) & 7) {
+	case 1: *s |= PHY_STAT_10HDX; break;
+	case 2: *s |= PHY_STAT_100HDX; break;
+	case 5: *s |= PHY_STAT_10FDX; break;
+	case 6: *s |= PHY_STAT_100FDX; break;
+	}
+}
+
+static phy_info_t phy_info_qs6612 = {
+	0x00181440, 
+	"QS6612",
+	
+	(const phy_cmd_t []) {  /* config */  
+		/* The PHY powers up isolated on the RPX, 
+		 * so send a command to allow operation.
+		 */
+		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
+
+		/* parse cr and anar to get some info */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* we need to read ISR, SR and ANER to acknowledge */
+		{ mk_mii_read(MII_QS6612_ISR), NULL },
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_REG_ANER), NULL },
+
+		/* read pcr to get info */
+		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+/* ------------------------------------------------------------------------- */
+/* AMD AM79C874 phy                                                          */
+
+/* register definitions for the 874 */
+
+#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
+#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
+#define MII_AM79C874_DR        18  /* Diagnostic Register            */
+#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
+#define MII_AM79C874_MCR       21  /* ModeControl Register           */
+#define MII_AM79C874_DC        23  /* Disconnect Counter             */
+#define MII_AM79C874_REC       24  /* Recieve Error Counter          */
+
+static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
+
+	if (mii_reg & 0x0080)
+		*s |= PHY_STAT_ANC;
+	if (mii_reg & 0x0400)
+		*s |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
+	else
+		*s |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
+}
+
+static phy_info_t phy_info_am79c874 = {
+	0x00022561, 
+	"AM79C874",
+	
+	(const phy_cmd_t []) {  /* config */  
+		/* limit to 10MBit because my protorype board 
+		 * doesn't work with 100. */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, 
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* find out the current status */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
+		/* we only need to read ISR to acknowledge */
+		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+/* ------------------------------------------------------------------------- */
+/* Kendin KS8721BL phy                                                       */
+
+/* register definitions for the 8721 */
+
+#define MII_KS8721BL_RXERCR	21
+#define MII_KS8721BL_ICSR	22
+#define	MII_KS8721BL_PHYCR	31
+
+static phy_info_t phy_info_ks8721bl = {
+	0x00022161, 
+	"KS8721BL",
+	
+	(const phy_cmd_t []) {  /* config */  
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup */
+		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, 
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* find out the current status */
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		/* we only need to read ISR to acknowledge */
+		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown */
+		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+/* ------------------------------------------------------------------------- */
+
+static phy_info_t *phy_info[] = {
+	&phy_info_lxt970,
+	&phy_info_lxt971,
+	&phy_info_qs6612,
+	&phy_info_am79c874,
+	&phy_info_ks8721bl,
+	NULL
+};
+
+/* ------------------------------------------------------------------------- */
+
+#ifdef CONFIG_RPXCLASSIC
+static void
+mii_link_interrupt(void *dev_id);
+#else
+static irqreturn_t
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+#endif
+
+#if defined(CONFIG_M5272)
+
+/*
+ *	Code specific to Coldfire 5272 setup.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+	volatile unsigned long *icrp;
+
+	/* Setup interrupt handlers. */
+	if (request_irq(86, fec_enet_interrupt, 0, "fec(RX)", dev) != 0)
+		printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n");
+	if (request_irq(87, fec_enet_interrupt, 0, "fec(TX)", dev) != 0)
+		printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n");
+	if (request_irq(88, fec_enet_interrupt, 0, "fec(OTHER)", dev) != 0)
+		printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n");
+	if (request_irq(66, mii_link_interrupt, 0, "fec(MII)", dev) != 0)
+		printk("FEC: Could not allocate MII IRQ(66)!\n");
+
+	/* Unmask interrupt at ColdFire 5272 SIM */
+	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
+	*icrp = 0x00000ddd;
+	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+	*icrp = (*icrp & 0x70777777) | 0x0d000000;
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+	volatile fec_t *fecp;
+
+	fecp = fep->hwp;
+	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
+	fecp->fec_x_cntrl = 0x00;
+
+	/*
+	 * Set MII speed to 2.5 MHz
+	 * See 5272 manual section 11.5.8: MSCR
+	 */
+	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
+	fecp->fec_mii_speed = fep->phy_speed;
+
+	fec_restart(dev, 0);
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile fec_t *fecp;
+	unsigned char *iap, tmpaddr[6];
+	int i;
+
+	fecp = fep->hwp;
+
+	if (fec_flashmac) {
+		/*
+		 * Get MAC address from FLASH.
+		 * If it is all 1's or 0's, use the default.
+		 */
+		iap = fec_flashmac;
+		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
+		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
+			iap = fec_mac_default;
+		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
+		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
+			iap = fec_mac_default;
+	} else {
+		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
+		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
+		iap = &tmpaddr[0];
+	}
+
+	for (i=0; i<ETH_ALEN; i++)
+		dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+
+	/* Adjust MAC if using default MAC address */
+	if (iap == fec_mac_default) {
+		dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
+			iap[ETH_ALEN-1] + fep->index;
+	}
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+	volatile unsigned long *icrp;
+	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+	*icrp = (*icrp & 0x70777777) | 0x08000000;
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+	volatile unsigned long *icrp;
+	/* Acknowledge the interrupt */
+	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+	*icrp = (*icrp & 0x77777777) | 0x08000000;
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+}
+
+/*
+ *	Do not need to make region uncached on 5272.
+ */
+static void __inline__ fec_uncache(unsigned long addr)
+{
+}
+
+/* ------------------------------------------------------------------------- */
+
+#elif defined(CONFIG_M527x) || defined(CONFIG_M528x)
+
+/*
+ *	Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	int b;
+
+	fep = netdev_priv(dev);
+	b = (fep->index) ? 128 : 64;
+
+	/* Setup interrupt handlers. */
+	if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0)
+		printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b);
+	if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0)
+		printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b);
+	if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0)
+		printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b);
+	if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0)
+		printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b);
+
+	if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0)
+		printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b);
+	if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0)
+		printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b);
+
+	if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0)
+		printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b);
+	if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0)
+		printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b);
+	if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0)
+		printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b);
+	if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0)
+		printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b);
+	if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0)
+		printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b);
+	if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0)
+		printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b);
+	if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0)
+		printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b);
+
+	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
+	{
+		volatile unsigned char  *icrp;
+		volatile unsigned long  *imrp;
+		int i;
+
+		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
+		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
+			MCFINTC_ICR0);
+		for (i = 23; (i < 36); i++)
+			icrp[i] = 0x23;
+
+		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
+			MCFINTC_IMRH);
+		*imrp &= ~0x0000000f;
+		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
+			MCFINTC_IMRL);
+		*imrp &= ~0xff800001;
+	}
+
+#if defined(CONFIG_M528x)
+	/* Set up gpio outputs for MII lines */
+	{
+		volatile unsigned short *gpio_paspar;
+  
+		gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR +
+			0x100056);
+		*gpio_paspar = 0x0f00;
+	}
+#endif
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+	volatile fec_t *fecp;
+
+	fecp = fep->hwp;
+	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
+	fecp->fec_x_cntrl = 0x00;
+
+	/*
+	 * Set MII speed to 2.5 MHz
+	 * See 5282 manual section 17.5.4.7: MSCR
+	 */
+	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
+	fecp->fec_mii_speed = fep->phy_speed;
+
+	fec_restart(dev, 0);
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile fec_t *fecp;
+	unsigned char *iap, tmpaddr[6];
+	int i;
+
+	fecp = fep->hwp;
+
+	if (fec_flashmac) {
+		/*
+		 * Get MAC address from FLASH.
+		 * If it is all 1's or 0's, use the default.
+		 */
+		iap = fec_flashmac;
+		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
+		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
+			iap = fec_mac_default;
+		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
+		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
+			iap = fec_mac_default;
+	} else {
+		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
+		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
+		iap = &tmpaddr[0];
+	}
+
+	for (i=0; i<ETH_ALEN; i++)
+		dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+
+	/* Adjust MAC if using default MAC address */
+	if (iap == fec_mac_default) {
+		dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
+			iap[ETH_ALEN-1] + fep->index;
+	}
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+}
+
+/*
+ *	Do not need to make region uncached on 5272.
+ */
+static void __inline__ fec_uncache(unsigned long addr)
+{
+}
+
+/* ------------------------------------------------------------------------- */
+
+#else
+
+/*
+ *	Code sepcific to the MPC860T setup.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+	volatile immap_t *immap;
+
+	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
+
+	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
+		panic("Could not allocate FEC IRQ!");
+
+#ifdef CONFIG_RPXCLASSIC
+	/* Make Port C, bit 15 an input that causes interrupts.
+	*/
+	immap->im_ioport.iop_pcpar &= ~0x0001;
+	immap->im_ioport.iop_pcdir &= ~0x0001;
+	immap->im_ioport.iop_pcso &= ~0x0001;
+	immap->im_ioport.iop_pcint |= 0x0001;
+	cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
+
+	/* Make LEDS reflect Link status.
+	*/
+	*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
+#endif
+#ifdef CONFIG_FADS
+	if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
+		panic("Could not allocate MII IRQ!");
+#endif
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	unsigned char *iap, tmpaddr[6];
+	bd_t *bd;
+	int i;
+
+	iap = bd->bi_enetaddr;
+	bd = (bd_t *)__res;
+
+#ifdef CONFIG_RPXCLASSIC
+	/* The Embedded Planet boards have only one MAC address in
+	 * the EEPROM, but can have two Ethernet ports.  For the
+	 * FEC port, we create another address by setting one of
+	 * the address bits above something that would have (up to
+	 * now) been allocated.
+	 */
+	for (i=0; i<6; i++)
+		tmpaddr[i] = *iap++;
+	tmpaddr[3] |= 0x80;
+	iap = tmpaddr;
+#endif
+
+	for (i=0; i<6; i++)
+		dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+	extern uint _get_IMMR(void);
+	volatile immap_t *immap;
+	volatile fec_t *fecp;
+
+	fecp = fep->hwp;
+	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
+
+	/* Configure all of port D for MII.
+	*/
+	immap->im_ioport.iop_pdpar = 0x1fff;
+
+	/* Bits moved from Rev. D onward.
+	*/
+	if ((_get_IMMR() & 0xffff) < 0x0501)
+		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */
+	else
+		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */
+	
+	/* Set MII speed to 2.5 MHz
+	*/
+	fecp->fec_mii_speed = fep->phy_speed = 
+		((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+	volatile fec_t *fecp;
+
+	fecp = fep->hwp;
+
+	/* Enable MII command finished interrupt 
+	*/
+	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+	volatile fec_t *fecp;
+
+	fecp = fep->hwp;
+	fecp->fec_r_hash = PKT_MAXBUF_SIZE;
+	/* Enable big endian and don't care about SDMA FC.
+	*/
+	fecp->fec_fun_code = 0x78000000;
+}
+
+static void __inline__ fec_uncache(unsigned long addr)
+{
+	pte_t *pte;
+	pte = va_to_pte(mem_addr);
+	pte_val(*pte) |= _PAGE_NO_CACHE;
+	flush_tlb_page(init_mm.mmap, mem_addr);
+}
+
+#endif
+
+/* ------------------------------------------------------------------------- */
+
+static void mii_display_status(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	if (!fep->link && !fep->old_link) {
+		/* Link is still down - don't print anything */
+		return;
+	}
+
+	printk("%s: status: ", dev->name);
+
+	if (!fep->link) {
+		printk("link down");
+	} else {
+		printk("link up");
+
+		switch(*s & PHY_STAT_SPMASK) {
+		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
+		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
+		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
+		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
+		default:
+			printk(", Unknown speed/duplex");
+		}
+
+		if (*s & PHY_STAT_ANC)
+			printk(", auto-negotiation complete");
+	}
+
+	if (*s & PHY_STAT_FAULT)
+		printk(", remote fault");
+
+	printk(".\n");
+}
+
+static void mii_display_config(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	volatile uint *s = &(fep->phy_status);
+
+	/*
+	** When we get here, phy_task is already removed from
+	** the workqueue.  It is thus safe to allow to reuse it.
+	*/
+	fep->mii_phy_task_queued = 0;
+	printk("%s: config: auto-negotiation ", dev->name);
+
+	if (*s & PHY_CONF_ANE)
+		printk("on");
+	else
+		printk("off");
+
+	if (*s & PHY_CONF_100FDX)
+		printk(", 100FDX");
+	if (*s & PHY_CONF_100HDX)
+		printk(", 100HDX");
+	if (*s & PHY_CONF_10FDX)
+		printk(", 10FDX");
+	if (*s & PHY_CONF_10HDX)
+		printk(", 10HDX");
+	if (!(*s & PHY_CONF_SPMASK))
+		printk(", No speed/duplex selected?");
+
+	if (*s & PHY_CONF_LOOP)
+		printk(", loopback enabled");
+	
+	printk(".\n");
+
+	fep->sequence_done = 1;
+}
+
+static void mii_relink(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	int duplex;
+
+	/*
+	** When we get here, phy_task is already removed from
+	** the workqueue.  It is thus safe to allow to reuse it.
+	*/
+	fep->mii_phy_task_queued = 0;
+	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
+	mii_display_status(dev);
+	fep->old_link = fep->link;
+
+	if (fep->link) {
+		duplex = 0;
+		if (fep->phy_status 
+		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
+			duplex = 1;
+		fec_restart(dev, duplex);
+	}
+	else
+		fec_stop(dev);
+
+#if 0
+	enable_irq(fep->mii_irq);
+#endif
+
+}
+
+/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
+static void mii_queue_relink(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	/*
+	** We cannot queue phy_task twice in the workqueue.  It
+	** would cause an endless loop in the workqueue.
+	** Fortunately, if the last mii_relink entry has not yet been
+	** executed now, it will do the job for the current interrupt,
+	** which is just what we want.
+	*/
+	if (fep->mii_phy_task_queued)
+		return;
+
+	fep->mii_phy_task_queued = 1;
+	INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
+	schedule_work(&fep->phy_task);
+}
+
+/* mii_queue_config is called in user context from fec_enet_open */
+static void mii_queue_config(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	if (fep->mii_phy_task_queued)
+		return;
+
+	fep->mii_phy_task_queued = 1;
+	INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
+	schedule_work(&fep->phy_task);
+}
+
+
+
+phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
+			       { mk_mii_end, } };
+phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
+			       { mk_mii_end, } };
+
+
+
+/* Read remainder of PHY ID.
+*/
+static void
+mii_discover_phy3(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	int i;
+
+	fep = netdev_priv(dev);
+	fep->phy_id |= (mii_reg & 0xffff);
+	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
+
+	for(i = 0; phy_info[i]; i++) {
+		if(phy_info[i]->id == (fep->phy_id >> 4))
+			break;
+	}
+
+	if (phy_info[i])
+		printk(" -- %s\n", phy_info[i]->name);
+	else
+		printk(" -- unknown PHY!\n");
+      
+	fep->phy = phy_info[i];
+	fep->phy_id_done = 1;
+}
+
+/* Scan all of the MII PHY addresses looking for someone to respond
+ * with a valid ID.  This usually happens quickly.
+ */
+static void
+mii_discover_phy(uint mii_reg, struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	volatile fec_t *fecp;
+	uint phytype;
+
+	fep = netdev_priv(dev);
+	fecp = fep->hwp;
+
+	if (fep->phy_addr < 32) {
+		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
+			
+			/* Got first part of ID, now get remainder.
+			*/
+			fep->phy_id = phytype << 16;
+			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
+							mii_discover_phy3);
+		}
+		else {
+			fep->phy_addr++;
+			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
+							mii_discover_phy);
+		}
+	} else {
+		printk("FEC: No PHY device found.\n");
+		/* Disable external MII interface */
+		fecp->fec_mii_speed = fep->phy_speed = 0;
+		fec_disable_phy_intr();
+	}
+}
+
+/* This interrupt occurs when the PHY detects a link change.
+*/
+#ifdef CONFIG_RPXCLASSIC
+static void
+mii_link_interrupt(void *dev_id)
+#else
+static irqreturn_t
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+#endif
+{
+	struct	net_device *dev = dev_id;
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	fec_phy_ack_intr();
+
+#if 0
+	disable_irq(fep->mii_irq);  /* disable now, enable later */
+#endif
+
+	mii_do_cmd(dev, fep->phy->ack_int);
+	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
+
+	return IRQ_HANDLED;
+}
+
+static int
+fec_enet_open(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	/* I should reset the ring buffers here, but I don't yet know
+	 * a simple way to do that.
+	 */
+	fec_set_mac_address(dev);
+
+	fep->sequence_done = 0;
+	fep->link = 0;
+
+	if (fep->phy) {
+		mii_do_cmd(dev, fep->phy->ack_int);
+		mii_do_cmd(dev, fep->phy->config);
+		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
+
+		/* FIXME: use netif_carrier_{on,off} ; this polls
+		 * until link is up which is wrong...  could be
+		 * 30 seconds or more we are trapped in here. -jgarzik
+		 */
+		while(!fep->sequence_done)
+			schedule();
+
+		mii_do_cmd(dev, fep->phy->startup);
+
+		/* Set the initial link state to true. A lot of hardware
+		 * based on this device does not implement a PHY interrupt,
+		 * so we are never notified of link change.
+		 */
+		fep->link = 1;
+	} else {
+		fep->link = 1; /* lets just try it and see */
+		/* no phy,  go full duplex,  it's most likely a hub chip */
+		fec_restart(dev, 1);
+	}
+
+	netif_start_queue(dev);
+	fep->opened = 1;
+	return 0;		/* Success */
+}
+
+static int
+fec_enet_close(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	/* Don't know what to do yet.
+	*/
+	fep->opened = 0;
+	netif_stop_queue(dev);
+	fec_stop(dev);
+
+	return 0;
+}
+
+static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+
+	return &fep->stats;
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering.  Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not.  I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+#define HASH_BITS	6		/* #bits in hash */
+#define CRC32_POLY	0xEDB88320
+
+static void set_multicast_list(struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	volatile fec_t *ep;
+	struct dev_mc_list *dmi;
+	unsigned int i, j, bit, data, crc;
+	unsigned char hash;
+
+	fep = netdev_priv(dev);
+	ep = fep->hwp;
+
+	if (dev->flags&IFF_PROMISC) {
+		/* Log any net taps. */
+		printk("%s: Promiscuous mode enabled.\n", dev->name);
+		ep->fec_r_cntrl |= 0x0008;
+	} else {
+
+		ep->fec_r_cntrl &= ~0x0008;
+
+		if (dev->flags & IFF_ALLMULTI) {
+			/* Catch all multicast addresses, so set the
+			 * filter to all 1's.
+			 */
+			ep->fec_hash_table_high = 0xffffffff;
+			ep->fec_hash_table_low = 0xffffffff;
+		} else {
+			/* Clear filter and add the addresses in hash register.
+			*/
+			ep->fec_hash_table_high = 0;
+			ep->fec_hash_table_low = 0;
+            
+			dmi = dev->mc_list;
+
+			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
+			{
+				/* Only support group multicast for now.
+				*/
+				if (!(dmi->dmi_addr[0] & 1))
+					continue;
+			
+				/* calculate crc32 value of mac address
+				*/
+				crc = 0xffffffff;
+
+				for (i = 0; i < dmi->dmi_addrlen; i++)
+				{
+					data = dmi->dmi_addr[i];
+					for (bit = 0; bit < 8; bit++, data >>= 1)
+					{
+						crc = (crc >> 1) ^
+						(((crc ^ data) & 1) ? CRC32_POLY : 0);
+					}
+				}
+
+				/* only upper 6 bits (HASH_BITS) are used
+				   which point to specific bit in he hash registers
+				*/
+				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
+			
+				if (hash > 31)
+					ep->fec_hash_table_high |= 1 << (hash - 32);
+				else
+					ep->fec_hash_table_low |= 1 << hash;
+			}
+		}
+	}
+}
+
+/* Set a MAC change in hardware.
+ */
+static void
+fec_set_mac_address(struct net_device *dev)
+{
+	struct fec_enet_private *fep;
+	volatile fec_t *fecp;
+
+	fep = netdev_priv(dev);
+	fecp = fep->hwp;
+
+	/* Set station address. */
+	fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
+		(fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
+	fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
+		(fep->mac_addr[4] << 24);
+
+}
+
+/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
+ */
+ /*
+  * XXX:  We need to clean up on failure exits here.
+  */
+int __init fec_enet_init(struct net_device *dev)
+{
+	struct fec_enet_private *fep = netdev_priv(dev);
+	unsigned long	mem_addr;
+	volatile cbd_t	*bdp;
+	cbd_t		*cbd_base;
+	volatile fec_t	*fecp;
+	int 		i, j;
+	static int	index = 0;
+
+	/* Only allow us to be probed once. */
+	if (index >= FEC_MAX_PORTS)
+		return -ENXIO;
+
+	/* Create an Ethernet device instance.
+	*/
+	fecp = (volatile fec_t *) fec_hw[index];
+
+	fep->index = index;
+	fep->hwp = fecp;
+
+	/* Whack a reset.  We should wait for this.
+	*/
+	fecp->fec_ecntrl = 1;
+	udelay(10);
+
+	/* Clear and enable interrupts */
+	fecp->fec_ievent = 0xffc0;
+	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+		FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+	fecp->fec_hash_table_high = 0;
+	fecp->fec_hash_table_low = 0;
+	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+        fecp->fec_ecntrl = 2;
+        fecp->fec_r_des_active = 0x01000000;
+
+	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
+	 * this needs some work to get unique addresses.
+	 *
+	 * This is our default MAC address unless the user changes
+	 * it via eth_mac_addr (our dev->set_mac_addr handler).
+	 */
+	fec_get_mac(dev);
+
+	/* Allocate memory for buffer descriptors.
+	*/
+	if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
+		printk("FEC init error.  Need more space.\n");
+		printk("FEC initialization failed.\n");
+		return 1;
+	}
+	mem_addr = __get_free_page(GFP_KERNEL);
+	cbd_base = (cbd_t *)mem_addr;
+	/* XXX: missing check for allocation failure */
+
+	fec_uncache(mem_addr);
+
+	/* Set receive and transmit descriptor base.
+	*/
+	fep->rx_bd_base = cbd_base;
+	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+	fep->cur_rx = fep->rx_bd_base;
+
+	fep->skb_cur = fep->skb_dirty = 0;
+
+	/* Initialize the receive buffer descriptors.
+	*/
+	bdp = fep->rx_bd_base;
+	for (i=0; i<FEC_ENET_RX_PAGES; i++) {
+
+		/* Allocate a page.
+		*/
+		mem_addr = __get_free_page(GFP_KERNEL);
+		/* XXX: missing check for allocation failure */
+
+		fec_uncache(mem_addr);
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
+			bdp->cbd_sc = BD_ENET_RX_EMPTY;
+			bdp->cbd_bufaddr = __pa(mem_addr);
+			mem_addr += FEC_ENET_RX_FRSIZE;
+			bdp++;
+		}
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* ...and the same for transmmit.
+	*/
+	bdp = fep->tx_bd_base;
+	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
+		if (j >= FEC_ENET_TX_FRPPG) {
+			mem_addr = __get_free_page(GFP_KERNEL);
+			j = 1;
+		} else {
+			mem_addr += FEC_ENET_TX_FRSIZE;
+			j++;
+		}
+		fep->tx_bounce[i] = (unsigned char *) mem_addr;
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = 0;
+		bdp->cbd_bufaddr = 0;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* Set receive and transmit descriptor base.
+	*/
+	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
+	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
+
+	/* Install our interrupt handlers. This varies depending on
+	 * the architecture.
+	*/
+	fec_request_intrs(dev);
+
+	dev->base_addr = (unsigned long)fecp;
+
+	/* The FEC Ethernet specific entries in the device structure. */
+	dev->open = fec_enet_open;
+	dev->hard_start_xmit = fec_enet_start_xmit;
+	dev->tx_timeout = fec_timeout;
+	dev->watchdog_timeo = TX_TIMEOUT;
+	dev->stop = fec_enet_close;
+	dev->get_stats = fec_enet_get_stats;
+	dev->set_multicast_list = set_multicast_list;
+
+	for (i=0; i<NMII-1; i++)
+		mii_cmds[i].mii_next = &mii_cmds[i+1];
+	mii_free = mii_cmds;
+
+	/* setup MII interface */
+	fec_set_mii(dev, fep);
+
+	printk("%s: FEC ENET Version 0.2, ", dev->name);
+	for (i=0; i<5; i++)
+		printk("%02x:", dev->dev_addr[i]);
+	printk("%02x\n", dev->dev_addr[5]);
+
+	/* Queue up command to detect the PHY and initialize the
+	 * remainder of the interface.
+	 */
+	fep->phy_id_done = 0;
+	fep->phy_addr = 0;
+	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
+
+	index++;
+	return 0;
+}
+
+/* This function is called to start or restart the FEC during a link
+ * change.  This only happens when switching between half and full
+ * duplex.
+ */
+static void
+fec_restart(struct net_device *dev, int duplex)
+{
+	struct fec_enet_private *fep;
+	volatile cbd_t *bdp;
+	volatile fec_t *fecp;
+	int i;
+
+	fep = netdev_priv(dev);
+	fecp = fep->hwp;
+
+	/* Whack a reset.  We should wait for this.
+	*/
+	fecp->fec_ecntrl = 1;
+	udelay(10);
+
+	/* Enable interrupts we wish to service.
+	*/
+	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+				FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+
+	/* Clear any outstanding interrupt.
+	*/
+	fecp->fec_ievent = 0xffc0;
+	fec_enable_phy_intr();
+
+	/* Set station address.
+	*/
+	fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
+		(fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
+	fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
+		(fep->mac_addr[4] << 24);
+
+	for (i=0; i<ETH_ALEN; i++)
+		dev->dev_addr[i] = fep->mac_addr[i];
+
+	/* Reset all multicast.
+	*/
+	fecp->fec_hash_table_high = 0;
+	fecp->fec_hash_table_low = 0;
+
+	/* Set maximum receive buffer size.
+	*/
+	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+
+	fec_localhw_setup();
+
+	/* Set receive and transmit descriptor base.
+	*/
+	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
+	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
+
+	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+	fep->cur_rx = fep->rx_bd_base;
+
+	/* Reset SKB transmit buffers.
+	*/
+	fep->skb_cur = fep->skb_dirty = 0;
+	for (i=0; i<=TX_RING_MOD_MASK; i++) {
+		if (fep->tx_skbuff[i] != NULL) {
+			dev_kfree_skb_any(fep->tx_skbuff[i]);
+			fep->tx_skbuff[i] = NULL;
+		}
+	}
+
+	/* Initialize the receive buffer descriptors.
+	*/
+	bdp = fep->rx_bd_base;
+	for (i=0; i<RX_RING_SIZE; i++) {
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = BD_ENET_RX_EMPTY;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* ...and the same for transmmit.
+	*/
+	bdp = fep->tx_bd_base;
+	for (i=0; i<TX_RING_SIZE; i++) {
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = 0;
+		bdp->cbd_bufaddr = 0;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* Enable MII mode.
+	*/
+	if (duplex) {
+		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
+		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
+	}
+	else {
+		/* MII enable|No Rcv on Xmit */
+		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
+		fecp->fec_x_cntrl = 0x00;
+	}
+	fep->full_duplex = duplex;
+
+	/* Set MII speed.
+	*/
+	fecp->fec_mii_speed = fep->phy_speed;
+
+	/* And last, enable the transmit and receive processing.
+	*/
+	fecp->fec_ecntrl = 2;
+	fecp->fec_r_des_active = 0x01000000;
+}
+
+static void
+fec_stop(struct net_device *dev)
+{
+	volatile fec_t *fecp;
+	struct fec_enet_private *fep;
+
+	fep = netdev_priv(dev);
+	fecp = fep->hwp;
+
+	fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
+
+	while(!(fecp->fec_ievent & 0x10000000));
+
+	/* Whack a reset.  We should wait for this.
+	*/
+	fecp->fec_ecntrl = 1;
+	udelay(10);
+
+	/* Clear outstanding MII command interrupts.
+	*/
+	fecp->fec_ievent = FEC_ENET_MII;
+	fec_enable_phy_intr();
+
+	fecp->fec_imask = FEC_ENET_MII;
+	fecp->fec_mii_speed = fep->phy_speed;
+}
+
+static int __init fec_enet_module_init(void)
+{
+	struct net_device *dev;
+	int i, err;
+
+	for (i = 0; (i < FEC_MAX_PORTS); i++) {
+		dev = alloc_etherdev(sizeof(struct fec_enet_private));
+		if (!dev)
+			return -ENOMEM;
+		err = fec_enet_init(dev);
+		if (err) {
+			free_netdev(dev);
+			continue;
+		}
+		if (register_netdev(dev) != 0) {
+			/* XXX: missing cleanup here */
+			free_netdev(dev);
+			return -EIO;
+		}
+	}
+	return 0;
+}
+
+module_init(fec_enet_module_init);
+
+MODULE_LICENSE("GPL");