blob: f70cedd0b656ff990c272b9aab6c0c0a986180bf [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_THERMAL | ATRACE_TAG_HAL)
#include "Thermal.h"
#include <android-base/file.h>
#include <android-base/logging.h>
#include <utils/Trace.h>
namespace aidl {
namespace android {
namespace hardware {
namespace thermal {
namespace implementation {
namespace {
using std::chrono::system_clock;
ndk::ScopedAStatus initErrorStatus() {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(EX_ILLEGAL_STATE,
"ThermalHAL not initialized properly.");
}
ndk::ScopedAStatus readErrorStatus() {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(
EX_ILLEGAL_STATE, "ThermalHal cannot read any sensor data");
}
bool interfacesEqual(const std::shared_ptr<::ndk::ICInterface> left,
const std::shared_ptr<::ndk::ICInterface> right) {
if (left == nullptr || right == nullptr || !left->isRemote() || !right->isRemote()) {
return left == right;
}
return left->asBinder() == right->asBinder();
}
} // namespace
Thermal::Thermal()
: thermal_helper_(
std::bind(&Thermal::sendThermalChangedCallback, this, std::placeholders::_1)) {}
ndk::ScopedAStatus Thermal::getTemperatures(std::vector<Temperature> *_aidl_return) {
return getFilteredTemperatures(false, TemperatureType::UNKNOWN, _aidl_return);
}
ndk::ScopedAStatus Thermal::getTemperaturesWithType(TemperatureType type,
std::vector<Temperature> *_aidl_return) {
return getFilteredTemperatures(true, type, _aidl_return);
}
ndk::ScopedAStatus Thermal::getFilteredTemperatures(bool filterType, TemperatureType type,
std::vector<Temperature> *_aidl_return) {
*_aidl_return = {};
if (!thermal_helper_.isInitializedOk()) {
return initErrorStatus();
}
if (!thermal_helper_.fillCurrentTemperatures(filterType, false, type, _aidl_return)) {
return readErrorStatus();
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Thermal::getCoolingDevices(std::vector<CoolingDevice> *_aidl_return) {
return getFilteredCoolingDevices(false, CoolingType::BATTERY, _aidl_return);
}
ndk::ScopedAStatus Thermal::getCoolingDevicesWithType(CoolingType type,
std::vector<CoolingDevice> *_aidl_return) {
return getFilteredCoolingDevices(true, type, _aidl_return);
}
ndk::ScopedAStatus Thermal::getFilteredCoolingDevices(bool filterType, CoolingType type,
std::vector<CoolingDevice> *_aidl_return) {
*_aidl_return = {};
if (!thermal_helper_.isInitializedOk()) {
return initErrorStatus();
}
if (!thermal_helper_.fillCurrentCoolingDevices(filterType, type, _aidl_return)) {
return readErrorStatus();
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Thermal::getTemperatureThresholds(
std::vector<TemperatureThreshold> *_aidl_return) {
*_aidl_return = {};
return getFilteredTemperatureThresholds(false, TemperatureType::UNKNOWN, _aidl_return);
}
ndk::ScopedAStatus Thermal::getTemperatureThresholdsWithType(
TemperatureType type, std::vector<TemperatureThreshold> *_aidl_return) {
return getFilteredTemperatureThresholds(true, type, _aidl_return);
}
ndk::ScopedAStatus Thermal::getFilteredTemperatureThresholds(
bool filterType, TemperatureType type, std::vector<TemperatureThreshold> *_aidl_return) {
*_aidl_return = {};
if (!thermal_helper_.isInitializedOk()) {
return initErrorStatus();
}
if (!thermal_helper_.fillTemperatureThresholds(filterType, type, _aidl_return)) {
return readErrorStatus();
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Thermal::registerThermalChangedCallback(
const std::shared_ptr<IThermalChangedCallback> &callback) {
ATRACE_CALL();
return registerThermalChangedCallback(callback, false, TemperatureType::UNKNOWN);
}
ndk::ScopedAStatus Thermal::registerThermalChangedCallbackWithType(
const std::shared_ptr<IThermalChangedCallback> &callback, TemperatureType type) {
ATRACE_CALL();
return registerThermalChangedCallback(callback, true, type);
}
ndk::ScopedAStatus Thermal::unregisterThermalChangedCallback(
const std::shared_ptr<IThermalChangedCallback> &callback) {
if (callback == nullptr) {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(EX_ILLEGAL_ARGUMENT,
"Invalid nullptr callback");
}
bool removed = false;
std::lock_guard<std::mutex> _lock(thermal_callback_mutex_);
callbacks_.erase(
std::remove_if(
callbacks_.begin(), callbacks_.end(),
[&](const CallbackSetting &c) {
if (interfacesEqual(c.callback, callback)) {
LOG(INFO)
<< "a callback has been unregistered to ThermalHAL, isFilter: "
<< c.is_filter_type << " Type: " << toString(c.type);
removed = true;
return true;
}
return false;
}),
callbacks_.end());
if (!removed) {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(EX_ILLEGAL_ARGUMENT,
"Callback wasn't registered");
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Thermal::registerThermalChangedCallback(
const std::shared_ptr<IThermalChangedCallback> &callback, bool filterType,
TemperatureType type) {
ATRACE_CALL();
if (callback == nullptr) {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(EX_ILLEGAL_ARGUMENT,
"Invalid nullptr callback");
}
if (!thermal_helper_.isInitializedOk()) {
return initErrorStatus();
}
std::lock_guard<std::mutex> _lock(thermal_callback_mutex_);
if (std::any_of(callbacks_.begin(), callbacks_.end(), [&](const CallbackSetting &c) {
return interfacesEqual(c.callback, callback);
})) {
return ndk::ScopedAStatus::fromExceptionCodeWithMessage(EX_ILLEGAL_ARGUMENT,
"Callback already registered");
}
auto c = callbacks_.emplace_back(callback, filterType, type);
LOG(INFO) << "a callback has been registered to ThermalHAL, isFilter: " << c.is_filter_type
<< " Type: " << toString(c.type);
// Send notification right away after successful thermal callback registration
std::function<void()> handler = [this, c, filterType, type]() {
std::vector<Temperature> temperatures;
if (thermal_helper_.fillCurrentTemperatures(filterType, true, type, &temperatures)) {
for (const auto &t : temperatures) {
if (!filterType || t.type == type) {
LOG(INFO) << "Sending notification: "
<< " Type: " << toString(t.type) << " Name: " << t.name
<< " CurrentValue: " << t.value
<< " ThrottlingStatus: " << toString(t.throttlingStatus);
c.callback->notifyThrottling(t);
}
}
}
};
looper_.addEvent(Looper::Event{handler});
return ndk::ScopedAStatus::ok();
}
void Thermal::sendThermalChangedCallback(const Temperature &t) {
ATRACE_CALL();
std::lock_guard<std::mutex> _lock(thermal_callback_mutex_);
LOG(VERBOSE) << "Sending notification: "
<< " Type: " << toString(t.type) << " Name: " << t.name
<< " CurrentValue: " << t.value
<< " ThrottlingStatus: " << toString(t.throttlingStatus);
callbacks_.erase(std::remove_if(callbacks_.begin(), callbacks_.end(),
[&](const CallbackSetting &c) {
if (!c.is_filter_type || t.type == c.type) {
::ndk::ScopedAStatus ret =
c.callback->notifyThrottling(t);
if (!ret.isOk()) {
LOG(ERROR) << "a Thermal callback is dead, removed "
"from callback list.";
return true;
}
return false;
}
return false;
}),
callbacks_.end());
}
void Thermal::dumpVirtualSensorInfo(std::ostringstream *dump_buf) {
*dump_buf << "getVirtualSensorInfo:" << std::endl;
const auto &map = thermal_helper_.GetSensorInfoMap();
for (const auto &sensor_info_pair : map) {
if (sensor_info_pair.second.virtual_sensor_info != nullptr) {
*dump_buf << " Name: " << sensor_info_pair.first << std::endl;
*dump_buf << " LinkedSensorName: [";
for (size_t i = 0;
i < sensor_info_pair.second.virtual_sensor_info->linked_sensors.size(); i++) {
*dump_buf << sensor_info_pair.second.virtual_sensor_info->linked_sensors[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " LinkedSensorCoefficient: [";
for (size_t i = 0; i < sensor_info_pair.second.virtual_sensor_info->coefficients.size();
i++) {
*dump_buf << sensor_info_pair.second.virtual_sensor_info->coefficients[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " Offset: " << sensor_info_pair.second.virtual_sensor_info->offset
<< std::endl;
*dump_buf << " Trigger Sensor: ";
if (sensor_info_pair.second.virtual_sensor_info->trigger_sensors.empty()) {
*dump_buf << "N/A" << std::endl;
} else {
for (size_t i = 0;
i < sensor_info_pair.second.virtual_sensor_info->trigger_sensors.size(); i++) {
*dump_buf << sensor_info_pair.second.virtual_sensor_info->trigger_sensors[i]
<< " ";
}
*dump_buf << std::endl;
}
*dump_buf << " Formula: ";
switch (sensor_info_pair.second.virtual_sensor_info->formula) {
case FormulaOption::COUNT_THRESHOLD:
*dump_buf << "COUNT_THRESHOLD";
break;
case FormulaOption::WEIGHTED_AVG:
*dump_buf << "WEIGHTED_AVG";
break;
case FormulaOption::MAXIMUM:
*dump_buf << "MAXIMUM";
break;
case FormulaOption::MINIMUM:
*dump_buf << "MINIMUM";
break;
default:
*dump_buf << "NONE";
break;
}
*dump_buf << std::endl;
}
}
}
void Thermal::dumpThrottlingInfo(std::ostringstream *dump_buf) {
*dump_buf << "getThrottlingInfo:" << std::endl;
const auto &map = thermal_helper_.GetSensorInfoMap();
const auto &thermal_throttling_status_map = thermal_helper_.GetThermalThrottlingStatusMap();
for (const auto &name_info_pair : map) {
if (name_info_pair.second.throttling_info == nullptr) {
continue;
}
if (name_info_pair.second.throttling_info->binded_cdev_info_map.size()) {
if (thermal_throttling_status_map.find(name_info_pair.first) ==
thermal_throttling_status_map.end()) {
continue;
}
*dump_buf << " Name: " << name_info_pair.first << std::endl;
if (thermal_throttling_status_map.at(name_info_pair.first)
.pid_power_budget_map.size()) {
*dump_buf << " PID Info:" << std::endl;
*dump_buf << " K_po: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->k_po[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " K_pu: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->k_pu[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " K_i: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->k_i[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " K_d: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->k_d[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " i_max: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->i_max[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " max_alloc_power: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->max_alloc_power[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " min_alloc_power: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->min_alloc_power[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " s_power: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->s_power[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " i_cutoff: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << name_info_pair.second.throttling_info->i_cutoff[i] << " ";
}
*dump_buf << "]" << std::endl;
}
*dump_buf << " Binded CDEV Info:" << std::endl;
for (const auto &binded_cdev_info_pair :
name_info_pair.second.throttling_info->binded_cdev_info_map) {
*dump_buf << " Cooling device name: " << binded_cdev_info_pair.first << std::endl;
if (thermal_throttling_status_map.at(name_info_pair.first)
.pid_power_budget_map.size()) {
*dump_buf << " WeightForPID: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << binded_cdev_info_pair.second.cdev_weight_for_pid[i] << " ";
}
*dump_buf << "]" << std::endl;
}
*dump_buf << " Ceiling: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << binded_cdev_info_pair.second.cdev_ceiling[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " Hard limit: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << binded_cdev_info_pair.second.limit_info[i] << " ";
}
*dump_buf << "]" << std::endl;
if (!binded_cdev_info_pair.second.power_rail.empty()) {
*dump_buf << " Binded power rail: "
<< binded_cdev_info_pair.second.power_rail << std::endl;
*dump_buf << " Power threshold: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << binded_cdev_info_pair.second.power_thresholds[i] << " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " Floor with PowerLink: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
*dump_buf << binded_cdev_info_pair.second.cdev_floor_with_power_link[i]
<< " ";
}
*dump_buf << "]" << std::endl;
*dump_buf << " Release logic: ";
switch (binded_cdev_info_pair.second.release_logic) {
case ReleaseLogic::INCREASE:
*dump_buf << "INCREASE";
break;
case ReleaseLogic::DECREASE:
*dump_buf << "DECREASE";
break;
case ReleaseLogic::STEPWISE:
*dump_buf << "STEPWISE";
break;
case ReleaseLogic::RELEASE_TO_FLOOR:
*dump_buf << "RELEASE_TO_FLOOR";
break;
default:
*dump_buf << "NONE";
break;
}
*dump_buf << std::endl;
*dump_buf << " high_power_check: " << std::boolalpha
<< binded_cdev_info_pair.second.high_power_check << std::endl;
*dump_buf << " throttling_with_power_link: " << std::boolalpha
<< binded_cdev_info_pair.second.throttling_with_power_link
<< std::endl;
}
}
}
}
}
void Thermal::dumpThrottlingRequestStatus(std::ostringstream *dump_buf) {
const auto &thermal_throttling_status_map = thermal_helper_.GetThermalThrottlingStatusMap();
if (!thermal_throttling_status_map.size()) {
return;
}
*dump_buf << "getThrottlingRequestStatus:" << std::endl;
for (const auto &thermal_throttling_status_pair : thermal_throttling_status_map) {
*dump_buf << " Name: " << thermal_throttling_status_pair.first << std::endl;
if (thermal_throttling_status_pair.second.pid_power_budget_map.size()) {
*dump_buf << " power budget request state" << std::endl;
for (const auto &request_pair :
thermal_throttling_status_pair.second.pid_power_budget_map) {
*dump_buf << " " << request_pair.first << ": " << request_pair.second
<< std::endl;
}
}
if (thermal_throttling_status_pair.second.pid_cdev_request_map.size()) {
*dump_buf << " pid cdev request state" << std::endl;
for (const auto &request_pair :
thermal_throttling_status_pair.second.pid_cdev_request_map) {
*dump_buf << " " << request_pair.first << ": " << request_pair.second
<< std::endl;
}
}
if (thermal_throttling_status_pair.second.hardlimit_cdev_request_map.size()) {
*dump_buf << " hard limit cdev request state" << std::endl;
for (const auto &request_pair :
thermal_throttling_status_pair.second.hardlimit_cdev_request_map) {
*dump_buf << " " << request_pair.first << ": " << request_pair.second
<< std::endl;
}
}
if (thermal_throttling_status_pair.second.throttling_release_map.size()) {
*dump_buf << " cdev release state" << std::endl;
for (const auto &request_pair :
thermal_throttling_status_pair.second.throttling_release_map) {
*dump_buf << " " << request_pair.first << ": " << request_pair.second
<< std::endl;
}
}
if (thermal_throttling_status_pair.second.cdev_status_map.size()) {
*dump_buf << " cdev request state" << std::endl;
for (const auto &request_pair : thermal_throttling_status_pair.second.cdev_status_map) {
*dump_buf << " " << request_pair.first << ": " << request_pair.second
<< std::endl;
}
}
}
}
void Thermal::dumpPowerRailInfo(std::ostringstream *dump_buf) {
const auto &power_rail_info_map = thermal_helper_.GetPowerRailInfoMap();
const auto &power_status_map = thermal_helper_.GetPowerStatusMap();
*dump_buf << "getPowerRailInfo:" << std::endl;
for (const auto &power_rail_pair : power_rail_info_map) {
*dump_buf << " Power Rail: " << power_rail_pair.first << std::endl;
*dump_buf << " Power Sample Count: " << power_rail_pair.second.power_sample_count
<< std::endl;
*dump_buf << " Power Sample Delay: " << power_rail_pair.second.power_sample_delay.count()
<< std::endl;
if (power_status_map.count(power_rail_pair.first)) {
auto power_history = power_status_map.at(power_rail_pair.first).power_history;
*dump_buf << " Last Updated AVG Power: "
<< power_status_map.at(power_rail_pair.first).last_updated_avg_power << " mW"
<< std::endl;
if (power_rail_pair.second.virtual_power_rail_info != nullptr) {
*dump_buf << " Formula=";
switch (power_rail_pair.second.virtual_power_rail_info->formula) {
case FormulaOption::COUNT_THRESHOLD:
*dump_buf << "COUNT_THRESHOLD";
break;
case FormulaOption::WEIGHTED_AVG:
*dump_buf << "WEIGHTED_AVG";
break;
case FormulaOption::MAXIMUM:
*dump_buf << "MAXIMUM";
break;
case FormulaOption::MINIMUM:
*dump_buf << "MINIMUM";
break;
default:
*dump_buf << "NONE";
break;
}
*dump_buf << std::endl;
}
for (size_t i = 0; i < power_history.size(); ++i) {
if (power_rail_pair.second.virtual_power_rail_info != nullptr) {
*dump_buf
<< " Linked power rail "
<< power_rail_pair.second.virtual_power_rail_info->linked_power_rails[i]
<< std::endl;
*dump_buf << " Coefficient="
<< power_rail_pair.second.virtual_power_rail_info->coefficients[i]
<< std::endl;
*dump_buf << " Power Samples: ";
} else {
*dump_buf << " Power Samples: ";
}
while (power_history[i].size() > 0) {
const auto power_sample = power_history[i].front();
power_history[i].pop();
*dump_buf << "(T=" << power_sample.duration
<< ", uWs=" << power_sample.energy_counter << ") ";
}
*dump_buf << std::endl;
}
}
}
}
void Thermal::dumpThermalData(int fd) {
std::ostringstream dump_buf;
if (!thermal_helper_.isInitializedOk()) {
dump_buf << "ThermalHAL not initialized properly." << std::endl;
} else {
const auto &sensor_status_map = thermal_helper_.GetSensorStatusMap();
{
dump_buf << "getCachedTemperatures:" << std::endl;
boot_clock::time_point now = boot_clock::now();
for (const auto &sensor_status_pair : sensor_status_map) {
if ((sensor_status_pair.second.thermal_cached.timestamp) ==
boot_clock::time_point::min()) {
continue;
}
dump_buf << " Name: " << sensor_status_pair.first
<< " CachedValue: " << sensor_status_pair.second.thermal_cached.temp
<< " TimeToCache: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(
now - sensor_status_pair.second.thermal_cached.timestamp)
.count()
<< "ms" << std::endl;
}
}
{
dump_buf << "getEmulTemperatures:" << std::endl;
for (const auto &sensor_status_pair : sensor_status_map) {
if (sensor_status_pair.second.emul_setting == nullptr) {
continue;
}
dump_buf << " Name: " << sensor_status_pair.first
<< " EmulTemp: " << sensor_status_pair.second.emul_setting->emul_temp
<< " EmulSeverity: "
<< sensor_status_pair.second.emul_setting->emul_severity << std::endl;
}
}
{
const auto &map = thermal_helper_.GetSensorInfoMap();
dump_buf << "getCurrentTemperatures:" << std::endl;
Temperature temp_2_0;
for (const auto &name_info_pair : map) {
thermal_helper_.readTemperature(name_info_pair.first, &temp_2_0, nullptr, true);
dump_buf << " Type: " << toString(temp_2_0.type)
<< " Name: " << name_info_pair.first << " CurrentValue: " << temp_2_0.value
<< " ThrottlingStatus: " << toString(temp_2_0.throttlingStatus)
<< std::endl;
}
dump_buf << "getTemperatureThresholds:" << std::endl;
for (const auto &name_info_pair : map) {
if (!name_info_pair.second.is_watch) {
continue;
}
dump_buf << " Type: " << toString(name_info_pair.second.type)
<< " Name: " << name_info_pair.first;
dump_buf << " hotThrottlingThreshold: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
dump_buf << name_info_pair.second.hot_thresholds[i] << " ";
}
dump_buf << "] coldThrottlingThreshold: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
dump_buf << name_info_pair.second.cold_thresholds[i] << " ";
}
dump_buf << "] vrThrottlingThreshold: " << name_info_pair.second.vr_threshold;
dump_buf << std::endl;
}
dump_buf << "getHysteresis:" << std::endl;
for (const auto &name_info_pair : map) {
if (!name_info_pair.second.is_watch) {
continue;
}
dump_buf << " Name: " << name_info_pair.first;
dump_buf << " hotHysteresis: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
dump_buf << name_info_pair.second.hot_hysteresis[i] << " ";
}
dump_buf << "] coldHysteresis: [";
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
dump_buf << name_info_pair.second.cold_hysteresis[i] << " ";
}
dump_buf << "]" << std::endl;
}
}
{
dump_buf << "getCurrentCoolingDevices:" << std::endl;
std::vector<CoolingDevice> cooling_devices;
if (!thermal_helper_.fillCurrentCoolingDevices(false, CoolingType::CPU,
&cooling_devices)) {
dump_buf << " Failed to getCurrentCoolingDevices." << std::endl;
}
for (const auto &c : cooling_devices) {
dump_buf << " Type: " << toString(c.type) << " Name: " << c.name
<< " CurrentValue: " << c.value << std::endl;
}
}
{
dump_buf << "getCallbacks:" << std::endl;
dump_buf << " Total: " << callbacks_.size() << std::endl;
for (const auto &c : callbacks_) {
dump_buf << " IsFilter: " << c.is_filter_type << " Type: " << toString(c.type)
<< std::endl;
}
}
{
dump_buf << "sendCallback:" << std::endl;
dump_buf << " Enabled List: ";
const auto &map = thermal_helper_.GetSensorInfoMap();
for (const auto &name_info_pair : map) {
if (name_info_pair.second.send_cb) {
dump_buf << name_info_pair.first << " ";
}
}
dump_buf << std::endl;
}
{
dump_buf << "sendPowerHint:" << std::endl;
dump_buf << " Enabled List: ";
const auto &map = thermal_helper_.GetSensorInfoMap();
for (const auto &name_info_pair : map) {
if (name_info_pair.second.send_powerhint) {
dump_buf << name_info_pair.first << " ";
}
}
dump_buf << std::endl;
}
dumpVirtualSensorInfo(&dump_buf);
dumpThrottlingInfo(&dump_buf);
dumpThrottlingRequestStatus(&dump_buf);
dumpPowerRailInfo(&dump_buf);
{
dump_buf << "getAIDLPowerHalInfo:" << std::endl;
dump_buf << " Exist: " << std::boolalpha << thermal_helper_.isAidlPowerHalExist()
<< std::endl;
dump_buf << " Connected: " << std::boolalpha << thermal_helper_.isPowerHalConnected()
<< std::endl;
dump_buf << " Ext connected: " << std::boolalpha
<< thermal_helper_.isPowerHalExtConnected() << std::endl;
}
}
std::string buf = dump_buf.str();
if (!::android::base::WriteStringToFd(buf, fd)) {
PLOG(ERROR) << "Failed to dump state to fd";
}
fsync(fd);
}
binder_status_t Thermal::dump(int fd, const char **args, uint32_t numArgs) {
if (numArgs == 0 || std::string(args[0]) == "-a") {
dumpThermalData(fd);
return STATUS_OK;
}
if (std::string(args[0]) == "emul_temp") {
return (numArgs != 3 || !thermal_helper_.emulTemp(std::string(args[1]), std::atof(args[2])))
? STATUS_BAD_VALUE
: STATUS_OK;
} else if (std::string(args[0]) == "emul_severity") {
return (numArgs != 3 ||
!thermal_helper_.emulSeverity(std::string(args[1]), std::atoi(args[2])))
? STATUS_BAD_VALUE
: STATUS_OK;
} else if (std::string(args[0]) == "emul_clear") {
return (numArgs != 2 || !thermal_helper_.emulClear(std::string(args[1]))) ? STATUS_BAD_VALUE
: STATUS_OK;
}
return STATUS_BAD_VALUE;
}
void Thermal::Looper::addEvent(const Thermal::Looper::Event &e) {
std::unique_lock<std::mutex> lock(mutex_);
events_.push(e);
cv_.notify_all();
}
void Thermal::Looper::loop() {
while (true) {
std::unique_lock<std::mutex> lock(mutex_);
cv_.wait(lock, [&] { return !events_.empty(); });
Event event = events_.front();
events_.pop();
lock.unlock();
event.handler();
}
}
} // namespace implementation
} // namespace thermal
} // namespace hardware
} // namespace android
} // namespace aidl